Micromolar sodium fluoride mediates anti-osteoclastogenesis in Porphyromonas gingivalis-induced alveolar bone loss

Ujjal K Bhawal , Hye-Jin Lee , Kazumune Arikawa , Michiharu Shimosaka , Masatoshi Suzuki , Toshizo Toyama , Takenori Sato , Ryota Kawamata , Chieko Taguchi , Nobushiro Hamada , Ikuo Nasu , Hirohisa Arakawa , Koh Shibutani

International Journal of Oral Science ›› 2015, Vol. 7 ›› Issue (4) : 242 -249.

PDF
International Journal of Oral Science ›› 2015, Vol. 7 ›› Issue (4) : 242 -249. DOI: 10.1038/ijos.2015.28
Article

Micromolar sodium fluoride mediates anti-osteoclastogenesis in Porphyromonas gingivalis-induced alveolar bone loss

Author information +
History +
PDF

Abstract

Fluoride should be evaluated as a potential treatment for severe gum disease Japanese and Korean researchers say. Sodium fluoride has been shown to increase bone mass and has been investigated as a treatment for postmenopausal osteoporosis in adults. In the current study a team led by Ujjal Bahwal from the Nihon University School of Dentistry, Matsudo, Japan, used bone marrow cells from rats to assess the effects of sodium fluoride on bone loss induced by Porphyromonas.gingivalis, a bacterial species associated with gum disease. They discovered that sodium fluoride suppressed the growth of the bacteria. It also prevented bone loss by inhibiting bacterial effects on bone resorption. Fluoride application may help maintain a healthy oral microbial balance and is a promising approach to peridontitis management the researchers concluded.

Keywords

alveolar bone loss / osteoclasts / Porphyromonas gingivalis / sodium fluoride

Cite this article

Download citation ▾
Ujjal K Bhawal, Hye-Jin Lee, Kazumune Arikawa, Michiharu Shimosaka, Masatoshi Suzuki, Toshizo Toyama, Takenori Sato, Ryota Kawamata, Chieko Taguchi, Nobushiro Hamada, Ikuo Nasu, Hirohisa Arakawa, Koh Shibutani. Micromolar sodium fluoride mediates anti-osteoclastogenesis in Porphyromonas gingivalis-induced alveolar bone loss. International Journal of Oral Science, 2015, 7(4): 242-249 DOI:10.1038/ijos.2015.28

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bellows CG, Heersche JN, Aubin JE. The effects of fluoride on osteoblast progenitors in vitro. J Bone Miner Res, 1990, 5(Suppl 1): 101-105.

[2]

Boivin G, Chavassieux P, Chapuy MC. Skeletal fluorosis: histomorphometric analysis of bone changes and bone fluoride content in 29 patients. Bone, 1989, 10(2): 89-99.

[3]

Turner CH, Garetto LP, Dunipace AJ. Fluoride treatment increased serum IGF-1, bone turnover, and bone mass, but not bone strength in rabbits. Calcif Tissue Int, 1997, 61(1): 77-83.

[4]

Rich C, Ensinck J. Effect of sodium fluoride on calcium metabolism in human beings. Nature, 1961, 191: 184-185.

[5]

Farley JR, Tarbaux N, Hall S. Evidence that fluoride-stimulated 3[H]-thymidine incorporation in embryonic chick calvarial cell cultures is dependent on the presence of a bone cell mitogen, sensitive to changes in the phosphate concentration, and modulated by systemic skeletal effectors. Metabolism, 1988, 37(10): 988-995.

[6]

Wergedal JE, Lau KH, Baylink DJ. Fluoride and bovine bone extract influence cell proliferation and phosphatase activities in human bone cell cultures. Clin Orthop Relat Res, 1988, 233: 274-282.

[7]

Graves DT, Cochran D. The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction. J Periodontol, 2003, 74(3): 391-401.

[8]

Haffajee AD, Socransky SS. Introduction to microbial aspects of periodontal biofilm communities, development and treatment. Periodontol 2000, 2006, 42: 7-12.

[9]

Holt SC, Ebersole J, Felton J. Implantation of bacteroides gingivalis in non-human primates initiates progression of periodontitis. Science, 1988, 239(4835): 55-57.

[10]

Assuma R, Oates T, Cochran D. IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis. J Immunol, 1998, 160(1): 403-409.

[11]

Teng YT, Nguyen H, Gao X. Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection. J Clin Invest, 2000, 106(6): 59-67.

[12]

Simonet WS, Lacey DL, Dunstan CR. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell, 1997, 89(2): 309-319.

[13]

Yasuda H, Shima N, Nakagawa N. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA, 1998, 95(7): 3597-3602.

[14]

Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature, 2003, 423(6937): 337-342.

[15]

Takayanagi H, Kim S, Koga T. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell, 2002, 3(6): 889-901.

[16]

Song I, Kim JH, Kim K. Regulatory mechanism of NFATc1 in RANKL-induced osteoclast activation. FEBS Lett, 2009, 583(14): 2435-2440.

[17]

Kenworthy R, Baverel M. Studies of a periodontal tissue lesion in the rat, untreated or treated with chlorhexidine digluconate. J Clin Periodontol, 1981, 8(4): 349-358.

[18]

Liu R, Bal HS, Desta T. Diabetes enhances periodontal bone loss through enhanced resorption and diminished bone formation. J Dent Res, 2006, 85(6): 510-514.

[19]

Arakawa Y, Bhawal UK, Ikoma T. Low concentration fluoride stimulates cell motility of epithelial cells in vitro. Biomed Res, 2009, 30(5): 271-277.

[20]

Okuda A, Kanehisa J, Heersche JN. The effects of sodium fluoride on the resorptive activity of isolated osteoclasts. J Bone Miner Res, 1990, 5(Suppl 1): S115-S120.

[21]

Zipkin I, Bernick S, Menczel J. A morphological study of the effect of fluoride on the periodontium of the hydrocortisone-treated rat. Periodontics, 1965, 3: 111-114.

[22]

Levy BM, Dreizen S, Bernick S. Studies on the biology of the periodontium of marmosets: IX. Effect of parathyroid hormone on the alveolar bone of marmosets pretreated with fluoridated and non-fluoridated drinking water. J Dent Res, 1970, 49(4): 816-821.

[23]

Debinski A, Nowicka G. Effect of sodium fluoride on ectopic induction of bone tissue. Ann Acad Med Stetin, 2004, 50(Suppl 1): 23-27.

[24]

Gedalia I, Hodge HC, Anaise J. The effect of sodium monofluorophosphate and sodium fluoride on bone immobilization in rats. Calcif Tissue Res, 1970, 5(2): 146-152.

[25]

Messer HH, Armstrong WD, Singer L. Fluoride, parathyroid hormone and calcitonin: effects on metabolic processes involved in bone resorption. Calcif Tissue Res, 1973, 13(3): 227-233.

[26]

Englander HR, Kesel RG, Gupta OP. The Aurora-Rockford, Ill., Study II. Effect of natural fluoride on the periodontal health of adults. Am J Public Health, 1963, 53: 1233-1242.

[27]

Taylor ML, Boyde A, Jones SJ. The effect of fluoride on the patterns of adherence of osteoclasts cultured on and resorbing dentine: a 3-D assessment of vinculin-labelled cells using confocal optical microscopy. Anat Embryol (Berl), 1989, 180(5): 427-435.

[28]

Den Besten PK, Yan Y, Featherstone JD. Effects of fluoride on rat dental enamel matrix proteinases. Arch Oral Biol, 2002, 47(11): 763-770.

[29]

Hall TJ, Chambers TJ. Molecular aspects of osteoclast function. Inflamm Res, 1996, 45(1): 1-9.

[30]

Drake FH, Dodds RA, James IE. Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J Biol Chem, 1996, 271(21): 12511-12516.

[31]

Gowen M, Lazner F, Dodds R. Cathepsin K knockout mice develop osteoporosis due to a deficit in matrix degradation but not mineralization. J Bone Miner Res, 1999, 14(10): 1654-1663.

[32]

Everts V, Korper W, Hoeben KA. Osteoclastic bone degradation and the role of different cysteine proteinases and matrix metalloproteinases: differences between calvaria and long bone. J Bone Miner Res, 2006, 21(9): 1399-1408.

[33]

Oguro A, Kawase T, Orikasa M. NaF induces early differentiation of murine bone marrow cells along the granulocytic pathway but not the monocytic or preosteoclastic pathway in vitro. In Vitro Cell Dev Biol Anim, 2003, 39(5/6): 243-248.

[34]

Oshita K, Yamaoka K, Udagawa N. Human mesenchymal stem cells inhibit osteoclastogenesis through osteoprotegerin production. Arthritis Rheum, 2011, 63(6): 1658-1667.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/