Evaluation of zirconia–porcelain interface using X-ray diffraction

Tariq F Alghazzawi , Gregg M Janowski

International Journal of Oral Science ›› 2015, Vol. 7 ›› Issue (3) : 187 -195.

PDF
International Journal of Oral Science ›› 2015, Vol. 7 ›› Issue (3) : 187 -195. DOI: 10.1038/ijos.2015.20
Article

Evaluation of zirconia–porcelain interface using X-ray diffraction

Author information +
History +
PDF

Abstract

Porcelain veneers protect zirconia dental restorations on aging but how the porcelain is applied has little effect on zirconia stability. Porcelain is added to zirconia restorations principally for cosmetic reasons, however, it is prone to chipping. The phase transformation of zirconia from a tetragonal to a monoclinic crystal structure is believed to be a contributing factor to chipping. This transformation may be influenced by the preparation conditions of the restorations and aging within the oral environment. Using X-ray diffraction, Tariq Alghazzawi and Gregg Janowski at the University of Alabama at Birmingham, US, showed that porcelain protected zirconia samples from the structural transformation under accelerated aging conditions. There was no significant difference in the protection offered between manual layering and pressing methods of porcelain application.

Keywords

aging / hydrofluoric acid / monoclinic / pressing / tetragonal / X-ray diffraction

Cite this article

Download citation ▾
Tariq F Alghazzawi, Gregg M Janowski. Evaluation of zirconia–porcelain interface using X-ray diffraction. International Journal of Oral Science, 2015, 7(3): 187-195 DOI:10.1038/ijos.2015.20

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Evaluation of a high fracture toughness composite ceramic for dental applications. J Prosthodont, 2008, 17(7): 538-544.

[2]

Fischer J, Stawarzcyk B, Trottmann A. Impact of thermal misfit on shear strength of veneering ceramic/zirconia composites. Dent Mater, 2009, 25(4): 419-423.

[3]

Swain MV. Unstable cracking (chipping) of veneering porcelain on all-ceramic dental crowns and fixed partial dentures. Acta Biomater, 2009, 5(5): 1668-1677.

[4]

Marchack BW, Futatsuki Y, Marchack CB. Customization of milled zirconia copings for all-ceramic crowns: a clinical report. J Prosthet Dent, 2008, 99(3): 169-173.

[5]

Ohlmann B, Rammelsberg P, Schmitter M. All-ceramic inlay-retained fixed partial dentures: preliminary results from a clinical study. J Dent, 2008, 36(9): 692-696.

[6]

Coelho PG, Silva NR, Bonfante EA. Fatigue testing of two porcelain-zirconia all-ceramic crown systems. Dent Mater, 2009, 25(9): 1122-1127.

[7]

Beuer F, Schweiger J, Eichberger M. High-strength CAD/CAM-fabricated veneering material sintered to zirconia copings – a new fabrication mode for all-ceramic restorations. Dent Mater, 2009, 25(1): 121-128.

[8]

Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Part II: zirconia veneering ceramics. Dent Mater, 2006, 22(9): 857-863.

[9]

Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Effect of zirconia type on its bond strength with different veneer ceramics. J Prosthodont, 2008, 17(5): 401-408.

[10]

Aboushelib MN, de Jager N, Kleverlaan CJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Dent Mater, 2005, 21(10): 984-991.

[11]

Tholey MJ, Berthold C, Swain MV. XRD2 micro-diffraction analysis of the interface between Y-TZP and veneering porcelain: role of application methods. Dent Mater, 2010, 26(6): 545-552.

[12]

Saka M, Yuzugullu B. Bond strength of veneer ceramic and zirconia cores with different surface modifications after microwave sintering. J Adv Prosthodont, 2013, 5(4): 485-493.

[13]

Stoner BR, Griggs JA, Neidigh J. Evidence of yttrium silicate inclusions in YSZ-porcelain veneers. J Biomed Mater Res Part B Appl Biomater, 2014, 102(3): 441-446.

[14]

Sriamporn T, Thamrongananskul N, Busabok C. Dental zirconia can be etched by hydrofluoric acid. Dent Mater J, 2014, 33(1): 79-85.

[15]

Alghazzawi TF, Lemons J, Liu PR. Influence of low-temperature environmental exposure on the mechanical properties and structural stability of dental zirconia. J Prosthodont, 2012, 21(5): 363-369.

[16]

International Organization for Standardization. International Standard ISO 13356. Implants for surgery—ceramic materials based on yttria-stabilized tetragonal zirconia (Y-TZP). Geneva: International Organization for Standardization, 2008.

[17]

Feder A, Anglada M. Low-temperature ageing degradation of 2.5Y-TZP heat-treated at 1650 °C. J Eur Ceram Soc, 2005, 25(13): 3117-3124.

[18]

Chowdhury S, Vohra YK, Lemons JE. Accelerating aging of zirconia femoral head implants: change of surface structure and mechanical properties. J Biomed Mater Res Part B Appl Biomater, 2007, 81(2): 486-492.

[19]

Ban S, Sato H, Suehiro Y. Biaxial flexure strength and low temperature degradation of Ce-TZP/Al2O3 nanocomposite and Y-TZP as dental restoratives. J Biomed Mater Res Part B Appl Biomater, 2008, 87(2): 492-498.

[20]

Amaral M, Valandro LF, Bottino MA. Low-temperature degradation of a Y-TZP ceramic after surface treatments. J Biomed Mater Res Part B Appl Biomater, 2013, 101(8): 1387-1392.

[21]

Souza RO, Valandro LF, Melo RM. Air-particle abrasion on zirconia ceramic using different protocols: effects on biaxial flexural strength after cyclic loading, phase transformation and surface topography. J Mech Behav Biomed Mater, 2013, 26: 155-163.

[22]

Sanon C, Chevalier J, Douillard T. Low temperature degradation and reliability of one-piece ceramic oral implants with a porous surface. Dent Mater, 2013, 29(4): 389-397.

[23]

Wulfman C, Djaker N, Sadoun M. 3Y-TZP In-Depth Phase transformation by raman spectroscopy: a comparison of three methods. J Am Ceram Soc, 2014, 97(7): 2233-2240.

[24]

Lange FF, Dunlop GL, Davis BI. Degradation during aging of transformation-toughened ZrO2–Y2O3 materials at 250 °C. J Am Ceram Soc, 1986, 69(3): 237-240.

[25]

Yoshimura M, Noma T, Kawabata K. Role of H2O on the degradation process of Y-TZP. J Mater Sci Lett, 1987, 6(4): 465-467.

[26]

Chevalier J, Gremillard L, Virkar AV. The tetragonal–monoclinic transformation in zirconia: lessons learned and future trends. J Am Ceram Soc, 2009, 92(9): 1901-1920.

[27]

Håff A, Löf H, Gunne J. A retrospective evaluation of zirconia-fixed partial dentures in general practices: an up to 13-year study. Dent Mater, 2015, 31(2): 162-170.

[28]

Güncü MB, Cakan U, Muhtarogullari M. Zirconia-based crowns up to 5 years in function: a retrospective clinical study and evaluation of prosthetic restorations and failures. Int J Prosthodont, 2015, 28(2): 152-157.

[29]

Marro FG, Anglada M. Strengthening of Vickers indented 3Y-TZP by hydrothermal ageing. J Eur Ceram Soc, 2012, 32(2): 317-324.

[30]

Toraya H, Yoshimura M, Somiya S. Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by x-ray diffraction. J Am Ceram Soc, 1984, 67(6): C119-C121.

[31]

Kosmac T, Wagner R, Claussen N. X-ray determination of transformation depths in ceramics containing tetragonal ZrO2. J Am Ceram Soc, 1981, 64(4): C72-C73.

[32]

Kosmac T, Oblak C, Marion L. The effects of dental grinding and sandblasting on ageing and fatigue behavior of dental zirconia (Y-TZP) ceramics. J Eur Ceram Soc, 2008, 28(5): 1085-1090.

[33]

Wang H, Aboushelib MN, Feilzer AJ. Strength influencing variables on CAD/CAM zirconia frameworks. Dent Mater, 2008, 24(5): 633-638.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/