Diabetes mellitus related bone metabolism and periodontal disease

Ying-Ying Wu , E Xiao , Dana T Graves

International Journal of Oral Science ›› 2015, Vol. 7 ›› Issue (2) : 63 -72.

PDF
International Journal of Oral Science ›› 2015, Vol. 7 ›› Issue (2) : 63 -72. DOI: 10.1038/ijos.2015.2
Article

Diabetes mellitus related bone metabolism and periodontal disease

Author information +
History +
PDF

Abstract

The negative impact of diabetes on bone quantity and quality can lead to an increased risk of fractures and severe gum disease. Dana Graves from the University of Pennsylvania in Philadelphia and colleagues reviewed the mechanisms behind bone loss in people with diabetes and the link to severe gum disease (periodontitis). Diabetes reduces bone-forming cells and bone turnover, while enhancing the number of cells that break down and absorb bone tissue back into the body. These changes in bone metabolism increase the risk of fracture and severe periodontitis. Diabetes is one of the main risk factors for periodontitis, people with diabetes being three to four times more likely to have the disease. This higher risk is most likely due to an exaggerated immune and inflammatory response to the bacteria responsible for gum disease.

Keywords

bone loss / diabetes mellitus / hyperglycemia / inflammation / osseous / osteoblast / osteoclast / periodontitis

Cite this article

Download citation ▾
Ying-Ying Wu, E Xiao, Dana T Graves. Diabetes mellitus related bone metabolism and periodontal disease. International Journal of Oral Science, 2015, 7(2): 63-72 DOI:10.1038/ijos.2015.2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bell GI, Polonsky KS. Diabetes mellitus and genetically programmed defects in beta-cell function. Nature, 2001, 414(6865): 788-791.

[2]

Kahn SE. Clinical review 135: the importance of beta-cell failure in the development and progression of type 2 diabetes. J Clin Endocrinol Metab, 2001, 86(9): 4047-4058.

[3]

Cavaghan MK, Ehrmann DA, Polonsky KS. Interactions between insulin resistance and insulin secretion in the development of glucose intolerance. J Clin Invest, 2000, 106(3): 329-333.

[4]

Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature, 2001, 414(6865): 782-787.

[5]

Kaul K, Tarr JM, Ahmad SI. Introduction to diabetes mellitus. Adv Exp Med Biol, 2012, 771: 1-11.

[6]

American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2009, 32(Suppl 1): S62-S67.

[7]

SEARCH for Diabetes in Youth Study Group Liese AD, D′Agostino RB Jr. The burden of diabetes mellitus among US youth: prevalence estimates from the SEARCH for Diabetes in Youth Study. Pediatrics, 2006, 118(4): 1510-1518.

[8]

Soltesz G, Patterson CC, Dahlquist G. Worldwide childhood type 1 diabetes incidence—what can we learn from epidemiology?. Pediatr Diabetes, 2007, 8(Suppl 6): 6-14.

[9]

Pinhas-Hamiel O, Zeitler P. The global spread of type 2 diabetes mellitus in children and adolescents. J Pediatr, 2005, 146(5): 693-700.

[10]

Padgett LE, Broniowska KA, Hansen PA. The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis. Ann N Y Acad Sci, 2013, 1281: 16-35.

[11]

Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature, 2010, 464(7293): 1293-1300.

[12]

Anderson MS, Bluestone JA. The NOD mouse: a model of immune dysregulation. Annu Rev Immunol, 2005, 23: 447-485.

[13]

van Belle TL, Coppieters KT, von Herrath MG. Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev, 2011, 91(1): 79-118.

[14]

Nolan CJ, Damm P, Prentki M. Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet, 2011, 378(9786): 169-181.

[15]

Prentki M, Nolan CJ. Islet beta cell failure in type 2 diabetes. J Clin Invest, 2006, 116(7): 1802-1812.

[16]

Defronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes, 2009, 58(4): 773-795.

[17]

Unger RH. Diabetic hyperglycemia: link to impaired glucose transport in pancreatic beta cells. Science, 1991, 251(4998): 1200-1205.

[18]

Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res, 2010, 107(9): 1058-1070.

[19]

Yerneni KK, Bai W, Khan BV. Hyperglycemia-induced activation of nuclear transcription factor kappaB in vascular smooth muscle cells. Diabetes, 1999, 48(4): 855-864.

[20]

Kolm-Litty V, Sauer U, Nerlich A. High glucose-induced transforming growth factor beta1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J Clin Invest, 1998, 101(1): 160-169.

[21]

Sayeski PP, Kudlow JE. Glucose metabolism to glucosamine is necessary for glucose stimulation of transforming growth factor-alpha gene transcription. J Biol Chem, 1996, 271(25): 15237-15243.

[22]

Yan LJ. Pathogenesis of chronic hyperglycemia: from reductive stress to oxidative stress. J Diabetes Res, 2014, 2014: 137919.

[23]

Degenhardt TP, Thorpe SR, Baynes JW. Chemical modification of proteins by methylglyoxal. Cell Mol Biol: Noisy-le-grand, 1998, 44(7): 1139-1145.

[24]

Wells-Knecht KJ, Zyzak DV, Litchfield JE. Mechanism of autoxidative glycosylation: identification of glyoxal and arabinose as intermediates in the autoxidative modification of proteins by glucose. Biochemistry, 1995, 34(11): 3702-3709.

[25]

Thornalley PJ. The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life. Biochem J, 1990, 269(1): 1-11.

[26]

Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414(6865): 813-820.

[27]

Reaven GM, Hollenbeck C, Jeng CY. Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes, 1988, 37(8): 1020-1024.

[28]

Walker KZ, O′Dea K, Johnson L. Body fat distribution and non-insulin-dependent diabetes: comparison of a fiber-rich, high-carbohydrate, low-fat (23%) diet and a 35% fat diet high in monounsaturated fat. Am J Clin Nutr, 1996, 63(2): 254-260.

[29]

Maedler K, Oberholzer J, Bucher P. Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic beta-cell turnover and function. Diabetes, 2003, 52(3): 726-733.

[30]

Maedler K, Spinas GA, Dyntar D. Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function. Diabetes, 2001, 50(1): 69-76.

[31]

Unger RH. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes, 1995, 44(8): 863-870.

[32]

Cusi K. The role of adipose tissue and lipotoxicity in the pathogenesis of type 2 diabetes. Curr Diab Rep, 2010, 10(4): 306-315.

[33]

Evans JL, Goldfine ID, Maddux BA. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev, 2002, 23(5): 599-622.

[34]

Evans JL, Goldfine ID, Maddux BA. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction?. Diabetes, 2003, 52(1): 1-8.

[35]

Pitocco D, Zaccardi F, Di Stasio E. Oxidative stress, nitric oxide, and diabetes. Rev Diabet Stud, 2010, 7(1): 15-25.

[36]

Niedowicz DM, Daleke DL. The role of oxidative stress in diabetic complications. Cell Biochem Biophys, 2005, 43(2): 289-330.

[37]

Valle A, Giamporcaro GM, Scavini M. Reduction of circulating neutrophils precedes and accompanies type 1 diabetes. Diabetes, 2013, 62(6): 2072-2077.

[38]

Harsunen MH, Puff R, D′Orlando O. Reduced blood leukocyte and neutrophil numbers in the pathogenesis of type 1 diabetes. Horm Metab Res, 2013, 45(6): 467-470.

[39]

Battaglia M. Neutrophils and type 1 autoimmune diabetes. Curr Opin Hematol, 2014, 21(1): 8-15.

[40]

Ding Y, Kantarci A, Hasturk H. Activation of RAGE induces elevated O2- generation by mononuclear phagocytes in diabetes. J Leukoc Biol, 2007, 81(2): 520-527.

[41]

Bradshaw EM, Raddassi K, Elyaman W. Monocytes from patients with type 1 diabetes spontaneously secrete proinflammatory cytokines inducing Th17 cells. J Immunol, 2009, 183(7): 4432-4439.

[42]

Espinoza-Jiménez A, Peón AN, Terrazas LI. Alternatively activated macrophages in types 1 and 2 diabetes. Mediators Inflamm, 2012, 2012: 815953.

[43]

Lontchi-Yimagou E, Sobngwi E, Matsha TE. Diabetes mellitus and inflammation. Curr Diab Rep, 2013, 13(3): 435-444.

[44]

Cruz NG, Sousa LP, Sousa MO. The linkage between inflammation and Type 2 diabetes mellitus. Diabetes Res Clin Pract, 2013, 99(2): 85-92.

[45]

Johnson DR, O′Connor JC, Satpathy A. Cytokines in type 2 diabetes. Vitam Horm, 2006, 74: 405-441.

[46]

Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science, 1993, 259(5091): 87-91.

[47]

Nikolajczyk BS, Jagannathan-Bogdan M, Shin H. State of the union between metabolism and the immune system in type 2 diabetes. Genes Immun, 2011, 12(4): 239-250.

[48]

Graves DT, Kayal RA. Diabetic complications and dysregulated innate immunity. Front Biosci, 2008, 13: 1227-1239.

[49]

Pham MN, Kolb H, Battelino T. Fasting and meal-stimulated residual beta cell function is positively associated with serum concentrations of proinflammatory cytokines and negatively associated with anti-inflammatory and regulatory cytokines in patients with longer term type 1 diabetes. Diabetologia, 2013, 56(6): 1356-1363.

[50]

Herder C, Carstensen M, Ouwens DM. Anti-inflammatory cytokines and risk of type 2 diabetes. Diabetes Obes Metab, 2013, 15(Suppl 3): 39-50.

[51]

Akash MS, Rehman K, Chen S. IL-1Ra and its delivery strategies: inserting the association in perspective. Pharm Res, 2013, 30(11): 2951-2966.

[52]

Ardestani A, Sauter NS, Paroni F. Neutralizing interleukin-1beta (IL-1beta) induces beta-cell survival by maintaining PDX1 protein nuclear localization. J Biol Chem, 2011, 286(19): 17144-17155.

[53]

Li S, Shin HJ, Ding EL. Adiponectin levels and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA, 2009, 302(2): 179-188.

[54]

Tandon N, Ali MK, Narayan KM. Pharmacologic prevention of microvascular and macrovascular complications in diabetes mellitus: implications of the results of recent clinical trials in type 2 diabetes. Am J Cardiovasc Drugs, 2012, 12(1): 7-22.

[55]

Mattila TK, de Boer A. Influence of intensive versus conventional glucose control on microvascular and macrovascular complications in type 1 and 2 diabetes mellitus. Drugs, 2010, 70(17): 2229-2245.

[56]

Gerstein HC, Pogue J, Mann JF. The relationship between dysglycaemia and cardiovascular and renal risk in diabetic and non-diabetic participants in the HOPE study: a prospective epidemiological analysis. Diabetologia, 2005, 48(9): 1749-1755.

[57]

Laakso M. Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes, 1999, 48(5): 937-942.

[58]

Roy S, Sato T, Paryani G. Downregulation of fibronectin overexpression reduces basement membrane thickening and vascular lesions in retinas of galactose-fed rats. Diabetes, 2003, 52(5): 1229-1234.

[59]

Chilelli NC, Burlina S, Lapolla A. AGEs, rather than hyperglycemia, are responsible for microvascular complications in diabetes: a “glycoxidation-centric” point of view. Nutr Metab Cardiovasc Dis, 2013, 23(10): 913-919.

[60]

Behl Y, Krothapalli P, Desta T. Diabetes-enhanced tumor necrosis factor-alpha production promotes apoptosis and the loss of retinal microvascular cells in type 1 and type 2 models of diabetic retinopathy. Am J Pathol, 2008, 172(5): 1411-1418.

[61]

Behl Y, Krothapalli P, Desta T. FOXO1 plays an important role in enhanced microvascular cell apoptosis and microvascular cell loss in type 1 and type 2 diabetic rats. Diabetes, 2009, 58(4): 917-925.

[62]

Davey GC, Patil SB, O′Loughlin A. Mesenchymal stem cell-based treatment for microvascular and secondary complications of diabetes mellitus. Front Endocrinol: Lausanne, 2014, 5: 86.

[63]

Ferris FL 3rd, Davis MD, Aiello LM. Treatment of diabetic retinopathy. N Engl J Med, 1999, 341(9): 667-678.

[64]

Han JW, Sin MY, Yoon YS. Cell therapy for diabetic neuropathy using adult stem or progenitor cells. Diabetes Metab J, 2013, 37(2): 91-105.

[65]

Gooch C, Podwall D. The diabetic neuropathies. Neurologist, 2004, 10(6): 311-322.

[66]

Duran-Salgado MB, Rubio-Guerra AF. Diabetic nephropathy and inflammation. World J Diabetes, 2014, 5(3): 393-398.

[67]

Yamagishi S, Fukami K, Ueda S. Molecular mechanisms of diabetic nephropathy and its therapeutic intervention. Curr Drug Targets, 2007, 8(8): 952-959.

[68]

Ziyadeh FN, Wolf G. Pathogenesis of the podocytopathy and proteinuria in diabetic glomerulopathy. Curr Diabetes Rev, 2008, 4(1): 39-45.

[69]

Valkusz Z. [Diabetes and osteoporosis.]. Orv Hetil, 2011, 152(29): 1161-1166.

[70]

Vestergaard P, Rejnmark L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia, 2005, 48(7): 1292-1299.

[71]

Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int, 2007, 18(4): 427-444.

[72]

Holmberg AH, Johnell O, Nilsson PM. Risk factors for fragility fracture in middle age. A prospective population-based study of 33 000 men and women. Osteoporos Int, 2006, 17(7): 1065-1077.

[73]

Bonds DE, Larson JC, Schwartz AV. Risk of fracture in women with type 2 diabetes: the Women's Health Initiative Observational Study. J Clin Endocrinol Metab, 2006, 91(9): 3404-3410.

[74]

Heap J, Murray MA, Miller SC. Alterations in bone characteristics associated with glycemic control in adolescents with type 1 diabetes mellitus. J Pediatr, 2004, 144(1): 56-62.

[75]

Okazaki R. [Management of osteoporosis in diabetes mellitus.]. Nippon Rinsho, 2009, 67(5): 1003-1010.

[76]

Schwartz AV, Hillier TA, Sellmeyer DE. Older women with diabetes have a higher risk of falls: a prospective study. Diabetes Care, 2002, 25(10): 1749-1754.

[77]

Saito M, Fujii K, Mori Y. Role of collagen enzymatic and glycation induced cross-links as a determinant of bone quality in spontaneously diabetic WBN/Kob rats. Osteoporos Int, 2006, 17(10): 1514-1523.

[78]

Krakauer JC, McKenna MJ, Buderer NF. Bone loss and bone turnover in diabetes. Diabetes, 1995, 44(7): 775-782.

[79]

Duarte VM, Ramos AM, Rezende LA. Osteopenia: a bone disorder associated with diabetes mellitus. J Bone Miner Metab, 2005, 23(1): 58-68.

[80]

Williams GA, Callon KE, Watson M. Skeletal phenotype of the leptin receptor-deficient db/db mouse. J Bone Miner Res, 2011, 26(8): 1698-1709.

[81]

Turner RT, Kalra SP, Wong CP. Peripheral leptin regulates bone formation. J Bone Miner Res, 2013, 28(1): 22-34.

[82]

Suzuki K, Kurose T, Takizawa M. Osteoclastic function is accelerated in male patients with type 2 diabetes mellitus: the preventive role of osteoclastogenesis inhibitory factor/osteoprotegerin (OCIF/OPG) on the decrease of bone mineral density. Diabetes Res Clin Pract, 2005, 68(2): 117-125.

[83]

Gerdhem P, Isaksson A, Akesson K. Increased bone density and decreased bone turnover, but no evident alteration of fracture susceptibility in elderly women with diabetes mellitus. Osteoporos Int, 2005, 16(12): 1506-1512.

[84]

Norris R, Parker M. Diabetes mellitus and hip fracture: a study of 5966 cases. Injury, 2011, 42(11): 1313-1316.

[85]

Perlman MH, Thordarson DB. Ankle fusion in a high risk population: an assessment of nonunion risk factors. Foot Ankle Int, 1999, 20(8): 491-496.

[86]

Brown ML, Yukata K, Farnsworth CW. Delayed fracture healing and increased callus adiposity in a C57BL/6J murine model of obesity-associated type 2 diabetes mellitus. PLoS One, 2014, 9(6): e99656.

[87]

Kayal RA, Tsatsas D, Bauer MA. Diminished bone formation during diabetic fracture healing is related to the premature resorption of cartilage associated with increased osteoclast activity. J Bone Miner Res, 2007, 22(4): 560-568.

[88]

Lozano D, de Castro LF, Dapía S. Role of parathyroid hormone-related protein in the decreased osteoblast function in diabetes-related osteopenia. Endocrinology, 2009, 150(5): 2027-2035.

[89]

Alikhani M, Alikhani Z, Boyd C. Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways. Bone, 2007, 40(2): 345-353.

[90]

Lu H, Kraut D, Gerstenfeld LC. Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation. Endocrinology, 2003, 144(1): 346-352.

[91]

Hamann C, Goettsch C, Mettelsiefen J. Delayed bone regeneration and low bone mass in a rat model of insulin-resistant type 2 diabetes mellitus is due to impaired osteoblast function. Am J Physiol Endocrinol Metab, 2011, 301(6): E1220-E1228.

[92]

Weinberg E, Maymon T, Moses O. Streptozotocin-induced diabetes in rats diminishes the size of the osteoprogenitor pool in bone marrow. Diabetes Res Clin Pract, 2014, 103(1): 35-41.

[93]

Santana RB, Xu L, Chase HB. A role for advanced glycation end products in diminished bone healing in type 1 diabetes. Diabetes, 2003, 52(6): 1502-1510.

[94]

Schett G. Effects of inflammatory and anti-inflammatory cytokines on the bone. Eur J Clin Invest, 2011, 41(12): 1361-1366.

[95]

Alblowi J, Kayal RA, Siqueira M. High levels of tumor necrosis factor-alpha contribute to accelerated loss of cartilage in diabetic fracture healing. Am J Pathol, 2009, 175(4): 1574-1585.

[96]

Liu R, Bal HS, Desta T. Tumor necrosis factor-alpha mediates diabetes-enhanced apoptosis of matrix-producing cells and impairs diabetic healing. Am J Pathol, 2006, 168(3): 757-764.

[97]

Al-Mashat HA, Kandru S, Liu R. Diabetes enhances mRNA levels of proapoptotic genes and caspase activity, which contribute to impaired healing. Diabetes, 2006, 55(2): 487-495.

[98]

Kayal RA, Siqueira M, Alblowi J. TNF-alpha mediates diabetes-enhanced chondrocyte apoptosis during fracture healing and stimulates chondrocyte apoptosis through FOXO1. J Bone Miner Res, 2010, 25(7): 1604-1615.

[99]

Gilbert LC, Rubin J, Nanes MS. The p55 TNF receptor mediates TNF inhibition of osteoblast differentiation independently of apoptosis. Am J Physiol Endocrinol Metab, 2005, 288(5): E1011-E1018.

[100]

Chang J, Liu F, Lee M. NF-κB inhibits osteogenic differentiation of mesenchymal stem cells by promoting β-catenin degradation. Proc Natl Acad Sci U S A, 2013, 110(23): 9469-9474.

[101]

Lu X, Beck GR Jr, Gilbert LC. Identification of the homeobox protein Prx1 (MHox, Prrx-1) as a regulator of osterix expression and mediator of tumor necrosis factor α action in osteoblast differentiation. J Bone Miner Res, 2011, 26(1): 209-219.

[102]

Stolzing A, Sellers D, Llewelyn O. Diabetes induced changes in rat mesenchymal stem cells. Cells Tissues Organs: Print, 2010, 191(6): 453-465.

[103]

Kume S, Kato S, Yamagishi S. Advanced glycation end-products attenuate human mesenchymal stem cells and prevent cognate differentiation into adipose tissue, cartilage, and bone. J Bone Miner Res, 2005, 20(9): 1647-1658.

[104]

Notsu M, Yamaguchi T, Okazaki K. Advanced glycation end product 3 (AGE3) suppresses the mineralization of mouse stromal ST2 cells and human mesenchymal stem cells by increasing TGF-β expression and secretion. Endocrinology, 2014, 155(7): 2402-2410.

[105]

Shin L, Peterson DA. Impaired therapeutic capacity of autologous stem cells in a model of type 2 diabetes. Stem Cells Transl Med, 2012, 1(2): 125-135.

[106]

Takizawa M, Suzuki K, Matsubayashi T. Increased bone resorption may play a crucial role in the occurrence of osteopenia in patients with type 2 diabetes: possible involvement of accelerated polyol pathway in its pathogenesis. Diabetes Res Clin Pract, 2008, 82(1): 119-126.

[107]

Reyes-García R, Rozas-Moreno P, López-Gallardo G. Serum levels of bone resorption markers are decreased in patients with type 2 diabetes. Acta Diabetol, 2013, 50(1): 47-52.

[108]

Suzuki K, Ishida H, Takeshita N. Circulating levels of tartrate-resistant acid phosphatase in rat models of non-insulin-dependent diabetes mellitus. J Diabetes Complicat, 1998, 12(3): 176-180.

[109]

Alblowi J, Tian C, Siqueira MF. Chemokine expression is upregulated in chondrocytes in diabetic fracture healing. Bone, 2013, 53(1): 294-300.

[110]

Hie M, Shimono M, Fujii K. Increased cathepsin K and tartrate-resistant acid phosphatase expression in bone of streptozotocin-induced diabetic rats. Bone, 2007, 41(6): 1045-1050.

[111]

Liu R, Bal HS, Desta T. Diabetes enhances periodontal bone loss through enhanced resorption and diminished bone formation. J Dent Res, 2006, 85(6): 510-514.

[112]

Jeffcoate WJ, Game F, Cavanagh PR. The role of proinflammatory cytokines in the cause of neuropathic osteoarthropathy (acute Charcot foot) in diabetes. Lancet, 2005, 366(9502): 2058-2061.

[113]

Ha H, Kwak HB, Lee SW. Reactive oxygen species mediate RANK signaling in osteoclasts. Exp Cell Res, 2004, 301(2): 119-127.

[114]

Drosatos-Tampakaki Z, Drosatos K, Siegelin Y. Palmitic acid and DGAT1 deficiency enhance osteoclastogenesis, while oleic acid-induced triglyceride formation prevents it. J Bone Miner Res, 2014, 29(5): 1183-1195.

[115]

Catalfamo DL, Britten TM, Storch DL. Hyperglycemia induced and intrinsic alterations in type 2 diabetes-derived osteoclast function. Oral Dis, 2013, 19(3): 303-312.

[116]

Miyata T, Kawai R, Taketomi S. Possible involvement of advanced glycation end-products in bone resorption. Nephrol Dial Transplant, 1996, 11(Suppl 5): 54-57.

[117]

Ding KH, Wang ZZ, Hamrick MW. Disordered osteoclast formation in RAGE-deficient mouse establishes an essential role for RAGE in diabetes related bone loss. Biochem Biophys Res Commun, 2006, 340(4): 1091-1097.

[118]

Graves DT, Li J, Cochran DL. Inflammation and uncoupling as mechanisms of periodontal bone loss. J Dent Res, 2011, 90(2): 143-153.

[119]

Borrell LN, Papapanou PN. Analytical epidemiology of periodontitis. J Clin Periodontol, 2005, 32(Suppl 6): 132-158.

[120]

Eke PI, Dye BA, Wei L. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J Dent Res, 2012, 91(10): 914-920.

[121]

Dye BA. Global periodontal disease epidemiology. Periodontol 2000, 2012, 58(1): 10-25.

[122]

Bascones-Martínez A, González-Febles J, Sanz-Esporrín J. Diabetes and periodontal disease. Review of the literature. Am J Dent, 2014, 27(2): 63-67.

[123]

Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet, 2005, 366(9499): 1809-1820.

[124]

Tanaka K, Miyake Y, Hanioka T. Relationship between IL1 gene polymorphisms and periodontal disease in Japanese women. DNA Cell Biol, 2014, 33(4): 227-233.

[125]

Tsaousoglou P, Nietzsche S, Cachovan G. Antibacterial activity of moxifloxacin on bacteria associated with periodontitis within a biofilm. J Med Microbiol, 2014, 63(Pt 2): 284-292.

[126]

Jünemann S, Prior K, Szczepanowski R. Bacterial community shift in treated periodontitis patients revealed by ion torrent 16S rRNA gene amplicon sequencing. PLoS One, 2012, 7(8): e41606.

[127]

Socransky SS, Haffajee AD, Cugini MA. Microbial complexes in subgingival plaque. J Clin Periodontol, 1998, 25(2): 134-144.

[128]

Griffen AL, Beall CJ, Campbell JH. Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. ISME J, 2012, 6(6): 1176-1185.

[129]

Hajishengallis G, Liang S, Payne MA. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe, 2011, 10(5): 497-506.

[130]

Jiao Y, Hasegawa M, Inohara N. Emerging roles of immunostimulatory oral bacteria in periodontitis development. Trends Microbiol, 2014, 22(3): 157-163.

[131]

Kumar PS, Griffen AL, Moeschberger ML. Identification of candidate periodontal pathogens and beneficial species by quantitative 16S clonal analysis. J Clin Microbiol, 2005, 43(8): 3944-3955.

[132]

Kumar PS, Leys EJ, Bryk JM. Changes in periodontal health status are associated with bacterial community shifts as assessed by quantitative 16S cloning and sequencing. J Clin Microbiol, 2006, 44(10): 3665-3673.

[133]

Haffajee AD, Bogren A, Hasturk H. Subgingival microbiota of chronic periodontitis subjects from different geographic locations. J Clin Periodontol, 2004, 31(11): 996-1002.

[134]

Graves DT, Oates T, Garlet GP . Review of osteoimmunology and the host response in endodontic and periodontal lesions . J Oral Microbiol 2011 ; 3 .

[135]

Boström L, Bergström J, Dahlén G. Smoking and subgingival microflora in periodontal disease. J Clin Periodontol, 2001, 28(3): 212-219.

[136]

Williams RC, Jeffcoat MK, Kaplan ML. Flurbiprofen: a potent inhibitor of alveolar bone resorption in beagles. Science, 1985, 227(4687): 640-642.

[137]

Assuma R, Oates T, Cochran D. IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis. J Immunol, 1998, 160(1): 403-409.

[138]

Delima AJ, Karatzas S, Amar S. Inflammation and tissue loss caused by periodontal pathogens is reduced by interleukin-1 antagonists. J Infect Dis, 2002, 186(4): 511-516.

[139]

Hajishengallis G. Aging and its impact on innate immunity and inflammation: implications for periodontitis. J Oral Biosci, 2014, 56(1): 30-37.

[140]

Loos BG, Papantonopoulos G. Molecular biotypes for periodontal diseases?. J Dent Res, 2013, 92(12): 1056-1057.

[141]

Albert DA, Ward A, Allweiss P. Diabetes and oral disease: implications for health professionals. Ann N Y Acad Sci, 2012, 1255: 1-15.

[142]

Bullon P, Newman HN, Battino M. Obesity, diabetes mellitus, atherosclerosis and chronic periodontitis: a shared pathology via oxidative stress and mitochondrial dysfunction?. Periodontol 2000, 2014, 64(1): 139-153.

[143]

Tsai C, Hayes C, Taylor GW. Glycemic control of type 2 diabetes and severe periodontal disease in the US adult population. Community Dent Oral Epidemiol, 2002, 30(3): 182-192.

[144]

Preshaw PM, Bissett SM. Periodontitis: oral complication of diabetes. Endocrinol Metab Clin North Am, 2013, 42(4): 849-867.

[145]

Löe H. Periodontal disease. The sixth complication of diabetes mellitus. Diabetes Care, 1993, 16(1): 329-334.

[146]

Popławska-Kita A, Siewko K, Szpak P. Association between type 1 diabetes and periodontal health. Adv Med Sci, 2014, 59(1): 126-131.

[147]

Xavier AC, Silva IN, Costa Fde O. [Periodontal status in children and adolescents with type 1 diabetes mellitus.]. Arq Bras Endocrinol Metabol, 2009, 53(3): 348-354.

[148]

Leite RS, Marlow NM, Fernandes JK. Oral health and type 2 diabetes. Am J Med Sci, 2013, 345(4): 271-273.

[149]

Fernandes JK, Wiegand RE, Salinas CF. Periodontal disease status in gullah african americans with type 2 diabetes living in South Carolina. J Periodontol, 2009, 80(7): 1062-1068.

[150]

Al-Khabbaz AK. Type 2 diabetes mellitus and periodontal disease severity. Oral Health Prev Dent, 2014, 12(1): 77-82.

[151]

Apoorva SM, Sridhar N, Suchetha A. Prevalence and severity of periodontal disease in type 2 diabetes mellitus (non-insulin-dependent diabetes mellitus) patients in Bangalore city: an epidemiological study. J Indian Soc Periodontol, 2013, 17(1): 25-29.

[152]

Ryan ME, Carnu O, Kamer A. The influence of diabetes on the periodontal tissues. J Am Dent Assoc, 2003, 134 (Spec No): 34S-40S.

[153]

Orbak R, Simsek S, Orbak Z. The influence of type-1 diabetes mellitus on dentition and oral health in children and adolescents. Yonsei Med J, 2008, 49(3): 357-365.

[154]

Costa CC, Resende GB, Souza JM. [Study of the oral manifestations in diabetic children and their correlation variables.]. Arq Bras Endocrinol Metabol, 2004, 48(3): 374-378.

[155]

Albandar JM, Tinoco EM. Global epidemiology of periodontal diseases in children and young persons. Periodontol 2000, 2002, 29: 153-176.

[156]

Katagiri S, Nagasawa T, Kobayashi H. Improvement of glycemic control after periodontal treatment by resolving gingival inflammation in type 2 diabetic patients with periodontal disease. J Diabetes Investig, 2012, 3(4): 402-409.

[157]

Kang J, de Brito Bezerra B, Pacios S. Aggregatibacter actinomycetemcomitans infection enhances apoptosis in vivo through a caspase-3-dependent mechanism in experimental periodontitis. Infect Immun, 2012, 80(6): 2247-2256.

[158]

Graves DT, Liu R, Oates TW. Diabetes-enhanced inflammation and apoptosis: impact on periodontal pathosis. Periodontol 2000, 2007, 45: 128-137.

[159]

Ponugoti B, Dong G, Graves DT. Role of forkhead transcription factors in diabetes-induced oxidative stress. Exp Diabetes Res, 2012, 2012: 939751.

[160]

Andriankaja OM, Galicia J, Dong G. Gene expression dynamics during diabetic periodontitis. J Dent Res, 2012, 91(12): 1160-1165.

[161]

Pacios S, Andriankaja O, Kang J. Bacterial infection increases periodontal bone loss in diabetic rats through enhanced apoptosis. Am J Pathol, 2013, 183(6): 1928-1935.

[162]

Mealey BL, Rose LF. Diabetes mellitus and inflammatory periodontal diseases. Curr Opin Endocrinol Diabetes Obes, 2008, 15(2): 135-141.

[163]

Lalla E, Cheng B, Lal S. Diabetes mellitus promotes periodontal destruction in children. J Clin Periodontol, 2007, 34(4): 294-298.

[164]

Deshpande K, Jain A, Sharma R. Diabetes and periodontitis. J Indian Soc Periodontol, 2010, 14(4): 207-212.

[165]

Tervonen T, Karjalainen K, Knuuttila M. Alveolar bone loss in type 1 diabetic subjects. J Clin Periodontol, 2000, 27(8): 567-571.

[166]

Kim JH, Lee DE, Gunawardhana KS. Effect of the interaction between periodontitis and type 1 diabetes mellitus on alveolar bone, mandibular condyle and tibia. Acta Odontol Scand, 2014, 72(4): 265-273.

[167]

Kim JH, Lee DE, Choi SH. Diabetic characteristics and alveolar bone loss in streptozotocin- and streptozotocin-nicotinamide-treated rats with periodontitis. J Periodont Res, 2014, 49(6): 792-800.

[168]

Taylor GW, Burt BA, Becker MP. Non-insulin dependent diabetes mellitus and alveolar bone loss progression over 2 years. J Periodontol, 1998, 69(1): 76-83.

[169]

Taylor GW, Burt BA, Becker MP. Glycemic control and alveolar bone loss progression in type 2 diabetes. Ann Periodontol, 1998, 3(1): 30-39.

[170]

Pacios S, Kang J, Galicia J. Diabetes aggravates periodontitis by limiting repair through enhanced inflammation. FASEB J, 2012, 26(4): 1423-1430.

[171]

Silva JA, Lopes Ferrucci D, Peroni LA. Periodontal disease-associated compensatory expression of osteoprotegerin is lost in type 1 diabetes mellitus and correlates with alveolar bone destruction by regulating osteoclastogenesis. Cells Tissues Organs: Print, 2012, 196(2): 137-150.

[172]

Graves DT, Naguib G, Lu H. Inflammation is more persistent in type 1 diabetic mice. J Dent Res, 2005, 84(4): 324-328.

[173]

Naguib G, Al-Mashat H, Desta T. Diabetes prolongs the inflammatory response to a bacterial stimulus through cytokine dysregulation. J Invest Dermatol, 2004, 123(1): 87-92.

[174]

Hasturk H, Kantarci A, Goguet-Surmenian E. Resolvin E1 regulates inflammation at the cellular and tissue level and restores tissue homeostasis in vivo. J Immunol, 2007, 179(10): 7021-7029.

[175]

Andriankaja OM, Galicia J, Dong G. Gene expression dynamics during diabetic periodontitis. J Dent Res, 2012, 91(12): 1160-1165.

[176]

Southerland JH, Taylor GT, Offenbacher S. Diabetes and periodontal infection: making the connection. Clin Diab, 2005, 23(4): 171-178.

[177]

Silva JA, Ferrucci DL, Peroni LA. Sequential IL-23 and IL-17 and increased Mmp8 and Mmp14 expression characterize the progression of an experimental model of periodontal disease in type 1 diabetes. J Cell Physiol, 2012, 227(6): 2441-2450.

[178]

Duarte PM, de Oliveira MC, Tambeli CH. Overexpression of interleukin-1beta and interleukin-6 may play an important role in periodontal breakdown in type 2 diabetic patients. J Periodont Res, 2007, 42(4): 377-381.

[179]

Bastos AS, Graves DT, Loureiro AP. Lipid peroxidation is associated with the severity of periodontal disease and local inflammatory markers in patients with type 2 diabetes. J Clin Endocrinol Metab, 2012, 97(8): E1353-E1362.

[180]

Lappin DF, Eapen B, Robertson D. Markers of bone destruction and formation and periodontitis in type 1 diabetes mellitus. J Clin Periodontol, 2009, 36(8): 634-641.

[181]

Mahamed DA, Marleau A, Alnaeeli M. G anaerobes-reactive CD4+ T-cells trigger RANKL-mediated enhanced alveolar bone loss in diabetic NOD mice. Diabetes, 2005, 54(5): 1477-1486.

[182]

Santos VR, Lima JA, Gonçalves TE. Receptor activator of nuclear factor-kappa B ligand/osteoprotegerin ratio in sites of chronic periodontitis of subjects with poorly and well-controlled type 2 diabetes. J Periodontol, 2010, 81(10): 1455-1465.

[183]

Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med, 1988, 318(20): 1315-1321.

[184]

Zizzi A, Tirabassi G, Aspriello SD. Gingival advanced glycation end-products in diabetes mellitus-associated chronic periodontitis: an immunohistochemical study. J Periodont Res, 2013, 48(3): 293-301.

[185]

Lamster IB. Diabetes mellitus and oral health: an interprofessional approach, 2014 Ames 130.

[186]

Mealey BL, Oates TW American Academy of Periodontology Diabetes mellitus and periodontal diseases. J Periodontol, 2006, 77(8): 1289-1303.

[187]

Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol, 1997, 82(2): 291-295.

[188]

Steinbeck MJ, Appel WH Jr, Verhoeven AJ. NADPH-oxidase expression and in situ production of superoxide by osteoclasts actively resorbing bone. J Cell Biol, 1994, 126(3): 765-772.

[189]

Thomas B, Ramesh A, Suresh S. A comparative evaluation of antioxidant enzymes and selenium in the serum of periodontitis patients with diabetes mellitus type 2. Contemp Clin Dent, 2013, 4(2): 176-180.

[190]

Garrett IR, Boyce BF, Oreffo RO. Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Invest, 1990, 85(3): 632-639.

[191]

Collin HL, Sorsa T, Meurman JH. Salivary matrix metalloproteinase (MMP-8) levels and gelatinase (MMP-9) activities in patients with type 2 diabetes mellitus. J Periodont Res, 2000, 35(5): 259-265.

[192]

Fu YW, He HB, Ou JG. [Osteoblast apoptosis in experimental diabetic periodontitis in rats.]. Hua Xi Kou Qiang Yi Xue Za Zhi, 2009, 27(3): 252-255, 259.

[193]

Behl Y, Siqueira M, Ortiz J. Activation of the acquired immune response reduces coupled bone formation in response to a periodontal pathogen. J Immunol, 2008, 181(12): 8711-8718.

[194]

Isaka J, Ohazama A, Kobayashi M. Participation of periodontal ligament cells with regeneration of alveolar bone. J Periodontol, 2001, 72(3): 314-323.

[195]

He H, Liu R, Desta T. Diabetes causes decreased osteoclastogenesis, reduced bone formation, and enhanced apoptosis of osteoblastic cells in bacteria stimulated bone loss. Endocrinology, 2004, 145(1): 447-452.

[196]

Naguib G, Al-Mashat H, Desta T. Diabetes prolongs the inflammatory response to a bacterial stimulus through cytokine dysregulation. J Invest Dermatol, 2004, 123(1): 87-92.

[197]

Lalla E, Lamster IB, Schmidt AM. Enhanced interaction of advanced glycation end products with their cellular receptor RAGE: implications for the pathogenesis of accelerated periodontal disease in diabetes. Ann Periodontol, 1998, 3(1): 13-19.

[198]

Taylor JJ, Preshaw PM, Lalla E. A review of the evidence for pathogenic mechanisms that may link periodontitis and diabetes. J Periodontol, 2013, 84(4 Suppl): S113-S134.

[199]

Chapple IL, Genco R working group 2 of the joint EFP/AAP workshop Diabetes and periodontal diseases: consensus report of the Joint EFP/AAP Workshop on Periodontitis and Systemic Diseases. J Periodontol, 2013, 84(4 Suppl): S106-S112.

[200]

Hein G, Weiss C, Lehmann G. Advanced glycation end product modification of bone proteins and bone remodelling: hypothesis and preliminary immunohistochemical findings. Ann Rheum Dis, 2006, 65(1): 101-104.

[201]

Fu YW, He HB. Apoptosis of periodontium cells in streptozototocin- and ligature-induced experimental diabetic periodontitis in rats. Acta Odontol Scand, 2013, 71(5): 1206-1215.

[202]

Ohnishi T, Bandow K, Kakimoto K. Oxidative stress causes alveolar bone loss in metabolic syndrome model mice with type 2 diabetes. J Periodont Res, 2009, 44(1): 43-51.

[203]

Wang GW, Klein JB, Kang YJ. Metallothionein inhibits doxorubicin-induced mitochondrial cytochrome c release and caspase-3 activation in cardiomyocytes. J Pharmacol Exp Ther, 2001, 298(2): 461-468.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/