PiggyBac transposon-mediated gene delivery efficiently generates stable transfectants derived from cultured primary human deciduous tooth dental pulp cells (HDDPCs) and HDDPC-derived iPS cells

Emi Inada , Issei Saitoh , Satoshi Watanabe , Reiji Aoki , Hiromi Miura , Masato Ohtsuka , Tomoya Murakami , Tadashi Sawami , Youichi Yamasaki , Masahiro Sato

International Journal of Oral Science ›› 2015, Vol. 7 ›› Issue (3) : 144 -154.

PDF
International Journal of Oral Science ›› 2015, Vol. 7 ›› Issue (3) : 144 -154. DOI: 10.1038/ijos.2015.18
Article

PiggyBac transposon-mediated gene delivery efficiently generates stable transfectants derived from cultured primary human deciduous tooth dental pulp cells (HDDPCs) and HDDPC-derived iPS cells

Author information +
History +
PDF

Abstract

A method that enables the efficient, effective delivery of genes into human baby teeth cells could aid research into tooth regeneration. Dental pulp cells found inside baby teeth give rise to other cells that make dentin, one of the major components of teeth. Masahiro Sato from Kagoshima University, Japan, and colleagues now show that a gene delivery system called ‘PiggyBac’ can be used to introduce DNA into these pulp cells or stem cells derived from them, yielding modified cells that stably express one or two genes for months at a time. The PiggyBac system greatly outperforms other more conventional gene delivery systems, but because of safety risks is not suited for clinical application. Rather, the system is expected to boost functional studies of genes and proteins related to tooth development.

Keywords

drug selection / electroporation / genetically modified / human deciduous tooth dental pulp cells / PiggyBac

Cite this article

Download citation ▾
Emi Inada, Issei Saitoh, Satoshi Watanabe, Reiji Aoki, Hiromi Miura, Masato Ohtsuka, Tomoya Murakami, Tadashi Sawami, Youichi Yamasaki, Masahiro Sato. PiggyBac transposon-mediated gene delivery efficiently generates stable transfectants derived from cultured primary human deciduous tooth dental pulp cells (HDDPCs) and HDDPC-derived iPS cells. International Journal of Oral Science, 2015, 7(3): 144-154 DOI:10.1038/ijos.2015.18

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kenneth MH, Harold EG, Samuel S. Seltzer and Bender’s dental pulp, 2002 Balrin: Quintessence Publishing

[2]

Huang GT, Sonoyama W, Chen J. In vitro characterization of human dental pulp cells: various isolation methods and culturing environments. Cell Tissue Res, 2006, 324(2): 225-236.

[3]

Thibodeau B, Teixeira F, Yamauchi M. Pulp revascularization of immature dog teeth with apical periodontitis. J Endod, 2007, 33(6): 680-689.

[4]

Wei X, Ling J, Wu L. Expression of mineralization markers in dental pulp cells. J Endod, 2007, 33(6): 703-708.

[5]

Galler KM, Schweikl H, Thonemann B. Human pulp-derived cells immortalized with simian virus 40 T-antigen. Eur J Oral Sci, 2006, 114(2): 138-146.

[6]

Thonemann B, Schmalz G. Immortalization of bovine dental papilla cells with simian virus 40 large t antigen. Arch Oral Biol, 2000, 45(10): 857-869.

[7]

Thonemann B, Schmalz G. Bovine dental papilla-derived cells immortalized with HPV 18 E6/E7. Eur J Oral Sci, 2000, 108(5): 432-441.

[8]

Suguro H, Asano M, Kaneko Y. Characterization of human dental pulp-derived cell lines. Int Endod J, 2008, 41(7): 609-616.

[9]

Yang X, Walboomers XF, van den Dolder J. Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers. Tissue Eng Part A, 2008, 14(1): 71-81.

[10]

Scheller EL, Chang J, Wang CY. Wnt/beta-catenin inhibits dental pulp stem cell differentiation. J Dent Res, 2008, 87(2): 126-130.

[11]

Wang GZ, Liu JH, Lu SZ. Ultrasonic destruction of albumin microbubbles enhances gene transfection and expression in cardiac myocytes. Chin Med J, 2011, 124(9): 1395-1400.

[12]

Ohlfest JR, Freese AB, Largaespada DA. Nonviral vectors for cancer gene therapy: prospects for integrating vectors and combination therapies. Curr Gene Ther, 2005, 5(6): 629-641.

[13]

Cary LC, Goebel M, Corsaro BG. Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology, 1989, 172(1): 156-169.

[14]

Fraser MJ, Cary L, Boonvisudhi K. Assay for movement of Lepidopteran transposon IFP2 in insect cells using a baculovirus genome as a target DNA. Virology, 1995, 211(2): 397-407.

[15]

Fraser MJ, Ciszczon T, Elick T. Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Mol Biol, 1996, 5(2): 141-151.

[16]

Bauser CA, Elick TA, Fraser MJ. Proteins from nuclear extracts of two lepidopteran cell lines recognize the ends of TTAA-specific transposons piggyBac and tagalong. Insect Mol Biol, 1999, 8(2): 223-230.

[17]

Ding S, Wu X, Li G. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell, 2005, 122(3): 473-483.

[18]

Bai DP, Yang MM, Chen YL. PiggyBac transposon-mediated gene transfer in Cashmere goat fetal fibroblast cells. Biosci Biotechnol Biochem, 2012, 76(5): 933-937.

[19]

Nakanishi H, Higuchi Y, Kawakami S. piggyBac transposon-mediated long-term gene expression in mice. Mol Ther, 2010, 18(4): 707-714.

[20]

Yusa K, Rad R, Takeda J. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods, 2009, 6(5): 363-369.

[21]

Nagy K, Sung HK, Zhang P. Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Rev, 2011, 7(3): 693-702.

[22]

Balu B, Chauhan C, Maher SP. piggyBac is an effective tool for functional analysis of the Plasmodium falciparum genome. BMC Microbiol, 2009, 9: 83.

[23]

Rad R, Rad L, Wang W. PiggyBac transposon mutagenesis: a tool for cancer gene discovery in mice. Science, 2010, 330(6007): 1104-1107.

[24]

Wilson MH, Coates CJ, George AL Jr. PiggyBac transposon-mediated gene transfer in human cells. Mol Ther, 2007, 15(1): 139-145.

[25]

Gronthos S, Brahim J, Li W. Stem cell properties of human dental pulp stem cells. J Dent Res, 2002, 81(8): 531-535.

[26]

Gronthos S, Mankani M, Brahim J. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A, 2000, 97(25): 13625-13630.

[27]

Niwa H, Yamamura K, Miyazaki J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene, 1991, 108(2): 193-199.

[28]

Okita K, Matsumura Y, Sato Y. A more efficient method to generate integration-free human iPS cells. Nat Methods, 2011, 8(5): 409-412.

[29]

Strober W . Trypan blue exclusion test of cell viability. Curr Protoc Immunol 2001; Appendix 3: Appendix 3B.

[30]

Suchanek J, Visek B, Soukup T. Stem cells from human exfoliated deciduous teeth – isolation, long term cultivation and phenotypical analysis. Acta Medica, 2010, 53(2): 93-99.

[31]

Karaoz E, Dogan BN, Aksoy A. Isolation and in vitro characterisation of dental pulp stem cells from natal teeth. Histochem Cell Biol, 2010, 133(1): 95-112.

[32]

Sato M, Akasaka E, Saitoh I. Targeted toxin-based selectable drug-free enrichment of mammalian cells with high transgene expression. Biology, 2013, 2: 341-355.

[33]

Sato M, Iwase R, Kasai K. Direct injection of foreign DNA into mouse testis as a possible alternative of sperm-mediated gene transfer. Anim Biotechnol, 1994, 5(1): 19-31.

[34]

Sato M, Ohtsuka M, Miura H. Determination of the optimal concentration of several selective drugs useful for generating multi-transgenic porcine embryonic fibroblasts. Reprod Domest Anim, 2012, 47(5): 759-765.

[35]

Chew SK, Rad R, Futreal PA. Genetic screens using the piggyBac transposon. Methods, 2011, 53(4): 366-371.

[36]

Potter CJ, Luo L. Splinkerette PCR for mapping transposable elements in Drosophila. PLoS One, 2010, 5(4): e10168.

[37]

Navabazam AR, Sadeghian Nodoshan F, Sheikhha MH. Characterization of mesenchymal stem cells from human dental pulp, preapical follicle and periodontal ligament. Iran J Reprod Med, 2013, 11(3): 235-242.

[38]

Berrill A, Tan HL, Wuang SC. Assessment of stem cell markers during long-term culture of mouse embryonic stem cells. Cytotechnology, 2004, 44(1/2): 77-91.

[39]

Kettlun C, Galvan DL, George AL. Manipulating piggyBac transposon chromosomal integration site selection in human cells. Mol Ther, 2011, 19(9): 1636-1644.

[40]

Clark KJ, Carlson DF, Foster LK. Enzymatic engineering of the porcine genome with transposons and recombinases. BMC Biotechnol, 2007, 7: 42.

[41]

Kim S, Saadeldin IM, Choi WJ. Production of transgenic bovine cloned embryos using piggybac transposition. J Vet Med Sci, 2011, 73(11): 1453-1457.

[42]

Li R, Zhuang Y, Han M. piggyBac as a high-capacity transgenesis and gene-therapy vector in human cells and mice. Dis Model Mech, 2013, 6(3): 828-833.

[43]

Gubin AN, Koduru S, Njoroge JM. Stable expression of green fluorescent protein after liposomal transfection of K562 cells without selective growth conditions. Biotechniques, 1999, 27(6): 1162-1164.

[44]

Mir LM. Electroporation-based gene therapy: recent evolution in the mechanism description and technology developments. Methods Mol Biol, 2014, 1121: 3-23.

[45]

Miura H, Inoko H, Inoue I. piggyBac-mediated generation of stable transfectants with surface human leukocyte antigen expression from a small number of cells. Anal Biochem, 2013, 437(1): 29-31.

[46]

Kahlig KM, Saridey SK, Kaja A. Multiplexed transposon-mediated stable gene transfer in human cells. Proc Natl Acad Sci U S A, 2010, 107(4): 1343-1348.

[47]

Ivics Z, Li MA, Mates L. Transposon-mediated genome manipulation in vertebrates. Nat Methods, 2009, 6(6): 415-422.

[48]

Hasegawa K, Cowan AB, Nakatsuji N. Efficient multicistronic expression of a transgene in human embryonic stem cells. Stem Cells, 2007, 25(7): 1707-1712.

[49]

Cadinanos J, Bradley A. Generation of an inducible and optimized piggyBac transposon system. Nucleic Acids Res, 2007, 35(12): e87.

[50]

Wang W, Lin C, Lu D. Chromosomal transposition of PiggyBac in mouse embryonic stem cells. Proc Natl Acad Sci U S A, 2008, 105(27): 9290-9295.

[51]

Woltjen K, Michael IP, Mohseni P. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature, 2009, 458(7239): 766-770.

[52]

Nakayama A, Sato M, Shinohara M. Efficient transfection of primarily cultured porcine embryonic fibroblasts using the Amaxa Nucleofection system. Cloning Stem Cells, 2007, 9(4): 523-534.

[53]

Sato M, Ohtsuka M, Miura H. Determination of the optimal concentration of several selective drugs useful for generating multi-transgenic porcine embryonic fibroblasts. Reprod Dom Anim, 2012, 47(5): 759-765.

[54]

Maciejewska I, Chomik E. Hereditary dentine diseases resulting from mutations in DSPP gene. J Dent, 2012, 40(7): 542-548.

[55]

Tabata K, Matsumoto K, Minami S. Nestin is an independent predictor of cancer-specific survival after radical cystectomy in patients with urothelial carcinoma of the bladder. PLoS One, 2014, 9(5): e91548.

[56]

Kondo S, Kubota S, Mukudai Y. Binding of glyceraldehyde-3-phosphate dehydrogenase to the cis-acting element of structure-anchored repression in ccn2 mRNA. Biochem Biophys Res Commun, 2011, 405(3): 382-387.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/