Porous titanium granules in critical size defects of rabbit tibia with or without membranes

Rafael Arcesio Delgado-Ruiz , Jose Luis Calvo-Guirado , Marcus Abboud , Maria Piedad Ramirez-Fernández , Jose Eduardo Maté-Sánchez , Bruno Negri , Alex Won , Georgios Romanos

International Journal of Oral Science ›› 2014, Vol. 6 ›› Issue (2) : 105 -110.

PDF
International Journal of Oral Science ›› 2014, Vol. 6 ›› Issue (2) : 105 -110. DOI: 10.1038/ijos.2014.6
Article

Porous titanium granules in critical size defects of rabbit tibia with or without membranes

Author information +
History +
PDF

Abstract

Porous titanium granules (PTGs) that support growth of new bone could provide a robust scaffold for dental and skeletal repair. As a truly natural replacement, a patient’s own bone tissue seems ideal for such procedures, but bone implants tend to degrade so artificial materials may be more desirable for some applications. PTGs are sturdy and allow colonization by bone cells. Researchers led by Rafael Delgado-Ruiz of Stony Brook University in the USA tested the capacity of PTGs to mediate bone repair in rabbits. Six weeks after implantation, animals that received implants showed closure of bone defects and extensive growth of new bone relative to controls. Recovery was greatly improved by enclosure of the PTGs within a membrane. Unenclosed PTGs tended to exit the bone defect, leading to incomplete repair and an inflammatory response.

Keywords

bone substitutes / collagen membranes / critical size defects / histomorphometry / titanium granules

Cite this article

Download citation ▾
Rafael Arcesio Delgado-Ruiz, Jose Luis Calvo-Guirado, Marcus Abboud, Maria Piedad Ramirez-Fernández, Jose Eduardo Maté-Sánchez, Bruno Negri, Alex Won, Georgios Romanos. Porous titanium granules in critical size defects of rabbit tibia with or without membranes. International Journal of Oral Science, 2014, 6(2): 105-110 DOI:10.1038/ijos.2014.6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nkenke E, Radespiel-Troger M, Wiltfang J. Morbidity of harvesting of retromolar bone grafts: a prospective study. Clin Oral Implants Res, 2002, 13(5): 514-521.

[2]

Wiltfang J, Schultze-Mosgau S, Nkenke E. Onlay augmentation versus sinus lift procedure in the treatment of the severely resorbed maxilla: a 5-year comparative longitudinal study. Int J Oral Maxillofac Surg, 2005, 34(8): 885-889.

[3]

Brugnami F, Caiazzo A, Leone C. Local intraoral autologous bone harvesting for dental implant treatment: alternative sources and criteria of choice. Keio J Med, 2009, 58(1): 24-28.

[4]

Becker ST, Warnke PH, Behrens E. Morbidity after iliac crest bone graft harvesting over an anterior versus posterior approach. J Oral Maxillofac Surg, 2011, 69(1): 48-53.

[5]

Binger T, Hell B. Resorption of microsurgically vascularized bone grafts after augmentation of the mandible. J Craniomaxillofac Surg, 1999, 27(2): 82-85.

[6]

Tadjoedin E, de Lange GL, Bronckers AL. Deproteinized cancellous bovine bone (Bio-Oss) as bone substitute for sinus floor elevation. J Clin Periodontol, 2003, 30(3): 261-270.

[7]

Cordaro L, Bosshardt DD, Palattella P. Maxillary sinus grafting with Bio-Oss or Straumann Bone Ceramic: histomorphometric results from a randomized controlled multicenter clinical trial. Clin Oral Implants Res, 2008, 19(8): 796-803.

[8]

Galindo-Moreno P, Avila G, Fernández-Barbero JE. Clinical and histologic comparison of two different composite grafts for sinus augmentation: a pilot clinical trial. Clin Oral Implants Res, 2008, 19(8): 755-759.

[9]

Lee CY, Rohrer MD, Prasad HS. Immediate loading of the grafted maxillary sinus using platelet rich plasma and autologous bone: a preliminary study with histologic and histomorphometric analysis. Implant Dent, 2008, 17(1): 59-73.

[10]

Umanjec-Korac S, Wu G, Hassan B et al. A retrospective analysis of the resorption rate of deproteinized bovine bone as maxillary sinus graft material on cone beam computed tomography. Clin Oral Implant Res 2013; doi: 10.1111/clr.12174. [Epub ahead of print].

[11]

Cardaropoli G, Araújo M, Hayacibara R. Healing of extraction sockets and surgically produced—augmented and non-augmented—defects in the alveolar ridge. An experimental study in the dog. J Clin Periodontol, 2005, 32(5): 435-440.

[12]

Araújo M, Linder E, Wennström J. The influence of Bio-Oss collagen on healing of an extraction socket: an experimental study in the dog. Int J Periodontics Restorative Dent, 2008, 28(2): 123-135.

[13]

Bashara H, Wohlfahrt JC, Polyzois I. The effect of permanent grafting materials on the preservation of the buccal bone plate after tooth extraction: an experimental study in the dog. Clin Oral Implants Res, 2012, 23(8): 911-917.

[14]

Verket A, Lyngstadaas SP, Rønold HJ. Osseointegration of dental implants in extraction sockets preserved with porous titanium granules—an experimental study. Clin Oral Implants Res, 2013, 25(2): e100-e108.

[15]

Tavakoli M, Moghareabed A, Farsam T. Evaluation of dental socket healing after using of porous titanium granules: histologic and histomorphometric assessment in dogs. Dent Res J, 2012, 9(5): 600-606.

[16]

Lambert F, Lecloux G, Léonard A. Bone regeneration using porous titanium particles versus bovine hydroxyapatite: a sinus lift study in rabbits. Clin Implant Dent Relat Res, 2013, 15(3): 412-426.

[17]

Bystedt H, Rasmusson L. Porous titanium granules used as osteoconductive material for sinus floor augmentation: a clinical pilot study. Clin Implant Dent Relat Res, 2009, 11(2): 101-105.

[18]

Verket A, Lyngstadaas SP, Rasmusson L. Maxillary sinus augmentation with porous titanium granules: a microcomputed tomography and histologic evaluation of human biopsy specimens. Int J Oral Maxillofac Implants, 2013, 28(3): 721-728.

[19]

Vandeweghe S, Leconte C, Ono D. Comparison of histological and three-dimensional characteristics of porous titanium granules and deproteinized bovine particulate grafts used for sinus floor augmentation in humans: a pilot study. Implant Dent, 2013, 22(4): 339-343.

[20]

Wohlfahrt JC, Lyngstadaas SP, Rønold HJ. Porous titanium granules in the surgical treatment of peri-implant osseous defects: a randomized clinical trial. Int J Oral Maxillofac Implants, 2012, 27(2): 401-410.

[21]

Mijiritsky E, Yatzkaier G, Mazor Z. The use of porous titanium granules for treatment of peri-implantitis lesions: preliminary clinical and radiographic results in humans. Br Dent J, 2013, 214(5): 1-3.

[22]

Thor A. Porous titanium granules and blood for bone regeneration around dental implants: report of four cases and review of the literature. Case Rep Dent, 2013, 2013: 410515.

[23]

Wohlfahrt JC, Lyngstadaas SP, Heijl L. Porous titanium granules in the treatment of mandibular Class II furcation defects: a consecutive case series. J Periodontol, 2012, 83(1): 61-69.

[24]

Wohlfahrt JC, Aass AM, Rønold HJ. Microcomputed tomographic and histologic analysis of animal experimental degree II furcation defects treated with porous titanium granules or deproteinized bovine bone. J Periodontol, 2012, 83(2): 211-221.

[25]

Carbone M, Goss E, Borione M. Implant supported prostheses with bone system implant system: a restrospective study with follow-up period up to 13 years about 1,021 fixtures. Minerva Stomatol, 2007, 56(10): 481-495.

[26]

Alffram PA, Bruce L, Bjursten LM. Implantation of the femoral stem into a bed of titanium granules using vibration. Upsala J Med Sci, 2007, 112(2): 183-189.

[27]

Turner TM, Urban RM, Hall DJ. Bone ingrowth through porous titanium granulate around a femoral stem. Histologic assessment in a six-month canine hemiarthoplasty model. Upsala J Med Sci, 2007, 112(2): 191-197.

[28]

Wohlfahrt JC, Monjo M, Ronold HJ. Porous titanium granules promote bone healing and growth in rabbit tibia periimplant osseous defects. Clin Oral Implants Res, 2010, 21(2): 165-173.

[29]

Le Guehennec L, Goyenvalle E, Aguado E. Small-animal models for testing macroporous ceramic bone substitutes. J Biomed Mater Res B Appl Biomater, 2005, 72(1): 69-78.

[30]

Calvo-Guirado JL, Delgado-Ruíz RA, Ramírez-Fernández MP. Histomorphometric and mineral degradation study of Ossceram: a novel biphasic B-tricalcium phosphate, in critical size defects in rabbits. Clin Oral Implants Res, 2012, 23(6): 667-675.

[31]

Dahlin C, Linde A, Gottlow J. Healing of bone defects by guided tissue regeneration. Plast Reconstr Surg, 1988, 81(5): 672-676.

[32]

Buser D, Dula K, Hess D. Localized ridge augmentation with autografts and barrier membranes. Periodontol, 1999, 19(1): 151-163.

[33]

Becker W, Becker BE, Caffesse R. A comparison of demineralized freeze-dried bone and autologous bone to induce bone formation in human extraction sockets. J Periodontol, 1994, 65(2): 1128-1133.

[34]

Becker W, Clokie C, Sennerby L. Histologic findings after implantation and evaluation of different grafting materials and titanium micro screws into extraction sockets: case reports. J Periodontol, 1998, 69(4): 414-421.

[35]

Esposito M, Grusovin MG, Coulthard P. The efficacy of various bone augmentation procedures for dental implants: a Cochrane systematic review of randomized controlled clinical trials. Int J Oral Maxillofac Implants, 2006, 21(5): 696-710.

[36]

Sivolella S, Bressan E, Salata LA. Osteogenesis at implants without primary bone contact — an experimental study in dogs. Clin Oral Implants Res, 2012, 23(5): 542-549.

[37]

Urban IA, Nagursky H, Church C. Incidence, diagnosis, and treatment of sinus graft infection after sinus floor elevation: a clinical study. Int J Oral Maxillofac Implants, 2012, 27(2): 449-457.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/