Sensory innervation around immediately vs. delayed loaded implants: a pilot study

Yan Huang , Jeroen van Dessel , Wendy Martens , Ivo Lambrichts , Wei-Jian Zhong , Guo-Wu Ma , Dan Lin , Xin Liang , Reinhilde Jacobs

International Journal of Oral Science ›› 2014, Vol. 6 ›› Issue (1) : 49 -55.

PDF
International Journal of Oral Science ›› 2014, Vol. 6 ›› Issue (1) : 49 -55. DOI: 10.1038/ijos.2014.53
Article

Sensory innervation around immediately vs. delayed loaded implants: a pilot study

Author information +
History +
PDF

Abstract

Researchers in China and Belgium show that immediate implant placement and loading favours sensory nerve regrowth in dogs. Tooth extraction can damage nerve endings that signal information about tooth loads and which are essential for chewing but little is known about the influence of implant loading on their recovery. A randomized study led by Xin Liang at Dalian Medical University, China, examined the effects of immediate and delayed implant placement and loading on sensory reinnervation in six dogs. They found that compared with control (natural socket healing after extraction) and delayed implant placement (eight weeks after tooth extraction), immediate implant placement and loading led to the highest nerve density and largest nerve fiber diameters 16 weeks after surgery. These findings highlight the importance of timely implant placing and loading in optimizing nerve recovery.

Keywords

animal experiments / dental implants / histomorphometry / immediate loading / mechanoreceptor / myelinated nerve fibres / osseoperception

Cite this article

Download citation ▾
Yan Huang, Jeroen van Dessel, Wendy Martens, Ivo Lambrichts, Wei-Jian Zhong, Guo-Wu Ma, Dan Lin, Xin Liang, Reinhilde Jacobs. Sensory innervation around immediately vs. delayed loaded implants: a pilot study. International Journal of Oral Science, 2014, 6(1): 49-55 DOI:10.1038/ijos.2014.53

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jacobs R, van Steenberghe D. Role of periodontal ligament receptors in the tactile function of teeth: a review. J Periodontal Res, 1994, 29(3): 153-167.

[2]

Trulsson M. Sensory-motor function of human periodontal mechanoreceptors. J Oral Rehabil, 2006, 33(4): 262-273.

[3]

Svensson KG, Grigoriadis J, Trulsson M. Alterations in intraoral manipulation and splitting of food by subjects with tooth- or implant-supported fixed prostheses. Clin Oral Implants Res, 2013, 24(5): 549-555.

[4]

Mason AG, Holland GR. The reinnervation of healing extraction sockets in the ferret. J Dent Res, 1993, 72(8): 1215-1221.

[5]

Brånemark PI. Osseointegration: biotechnological perspetive and clinical modality//. Proceedings of the osseointegration in skeletal reconstruction and joint replacement, 1997 Carol Stream: Quintessence Publishing

[6]

van Steenberghe D. From osseointegration to osseoperception. J Dent Res, 2000, 79(11): 1833-1837.

[7]

Jacobs R, Van Steenberghe D. From osseoperception to implant-mediated sensory-motor interactions and related clinical implications. J Oral Rehabil, 2006, 33(4): 282-292.

[8]

Jacobs R. Neurological versus psychophysical assessment of osseoperception//. Proceedings of the osseoperception, 1998 Leuven: Catholic University Leuven 75-88.

[9]

Jacobs R, van Steenberghe D. Comparative evaluation of the oral tactile function by means of teeth or implant-supported prostheses. Clin Oral Implants Res, 1991, 2(2): 75-80.

[10]

Enkling N, Heussner S, Nicolay C. Tactile sensibility of single-tooth implants and natural teeth under local anesthesia of the natural antagonistic teeth. Clin Implant Dent Relat Res, 2012, 14(2): 273-280.

[11]

Kazemi M, Geramipanah F, Negahdari R et al. Active tactile sensibility of single-tooth implants versus natural dentition: a split-mouth double-blind randomized clinical trial. Clin Implant Dent Relat Res 2013; doi: 10.1111/cid.12053. [Epub ahead of print].

[12]

Habre-Hallage P, Dricot L, Jacobs R. Brain plasticity and cortical correlates of osseoperception revealed by punctate mechanical stimulation of osseointegrated oral implants during fMRI. Eur J Oral Implantol, 2012, 5(2): 175-190.

[13]

Habre-Hallage P, Dricot L, Hermoye L et al. Cortical activation resulting from the stimulation of periodontal mechanoreceptors measured by functional magnetic resonance imaging (fMRI). Clin Oral Investig 2014; doi: 10.1007/s00784-013-1174-1. [Epub ahead of print].

[14]

Lambrichts I. Histological and ultrastructural aspects of bone innervation//. Proceedings of the osseoperception, 1998 Leuven: Catholic University Leuven 13-20.

[15]

Suzuki Y, Matsuzaka K, Ishizaki K. Characterization of the peri-implant epithelium in hamster palatine mucosa: behavior of Merkel cells and nerve endings. Biomed Res, 2005, 26(6): 257-269.

[16]

Yamaza T, Kido MA, Wang B. Distribution of substance P and neurokinin-1 receptors in the peri-implant epithelium around titanium dental implants in rats. Cell Tissue Res, 2009, 335(2): 407-415.

[17]

Wada S, Kojo T, Wang YH. Effect of loading on the development of nerve fibers around oral implants in the dog mandible. Clin Oral Implants Res, 2001, 12(3): 219-224.

[18]

Huang Y, van Dessel J, Liang X et al. Effects of immediate and delayed loading on peri-implant trabecular structures: a cone beam CT evaluation. Clin Implant Dent Relat Res 2013; doi: 10.1111/cid.12063. [Epub ahead of print].

[19]

Huang Y, Corpas LS, Martens W. Histomorphological study of myelinated nerve fibres in the periodontal ligament of human canine. Acta Odontol Scand, 2011, 69(5): 279-286.

[20]

Weiner S, Klein M, Doyle JL. Identification of axons in the peri-implant region by immunohistochemistry. Int J Oral Maxillofac Implants, 1995, 10(6): 689-695.

[21]

Muratori L, Ronchi G, Raimondo S. Can regenerated nerve fibers return to normal size? A long-term post-traumatic study of the rat median nerve crush injury model. Microsurgery, 2012, 32(5): 383-387.

[22]

Lesaffre E, Philstrom B, Needleman I. The design and analysis of split-mouth studies: what statisticians and clinicians should know. Stat Med, 2009, 28(28): 3470-3482.

[23]

Georgiou M, Bunting SC, Davies HA. Engineered neural tissue for peripheral nerve repair. Biomaterials, 2013, 34(30): 7335-7343.

[24]

Sacerdote P, Levrini L. Peripheral mechanisms of dental pain: the role of substance P. Mediators Inflamm, 2012, 2012: 951920.

[25]

Lambrichts I, Creemers J, vandenabeele F. Possible sympathetic modulation of periodontal ligament mechanoreceptors. An ultrastructural study. Biol Cell, 1995, 84(3): 230-231.

[26]

Vandenabeele F, Creemers J, Lambrichts I. Encapsulated Ruffini-like endings in human lumbar facet joints. J Anat, 1997, 191(Pt 4): 571-583.

[27]

Cadden SW, Lisney SJ, Matthews B. Thresholds to electrical stimulation of nerves in cat canine tooth-pulp with A beta-, A delta- and C-fibre conduction velocities. Brain Res, 1983, 261(1): 31-41.

[28]

Long A, Loescher AR, Robinson PP. A quantitative study on the myelinated fiber innervation of the periodontal ligament of cat canine teeth. J Dent Res, 1995, 74(6): 1310-1317.

[29]

Yoshida K. Tactile threshold for static and dynamic loads in tissue surrounding osseointegrated implants//. Proceedings of the osseoperception, 1998 Leuven: Catholic University Leuven 143-156.

[30]

Huang Y, Jacobs R, van Dessel J et al. A systematic review on the innervation of peri-implant tissues with special emphasis on the influence of implant placement and loading protocols. Clin Oral Implants Res 2014; doi: 10.1111/clr.12344. [Epub ahead of print].

[31]

de Medinaceli L. Interpreting nerve morphometry data after experimental traumatic lesions. J Neurosci Methods, 1995, 58(1/2): 29-37.

[32]

Wolthers M, Moldovan M, Binderup T. Comparative electrophysiological, functional, and histological studies of nerve lesions in rats. Microsurgery, 2005, 25(6): 508-519.

[33]

Ikeda M, Oka Y. The relationship between nerve conduction velocity and fiber morphology during peripheral nerve regeneration. Brain Behav, 2012, 2(4): 382-390.

[34]

Yamada H, Maeda T, Hanada K. Re-innervation in the canine periodontal ligament of replanted teeth using an antibody to protein gene product 9.5: an immunohistochemical study. Endod Dent Traumatol, 1999, 15(5): 221-234.

[35]

Qiao SC, Lv XF, Zhuang LF. Animal study of sensory function of nerve fibers surrounding dental implant. Shanghai Kou Qiang Yi Xue, 2011 Chinese 119-124.

[36]

Ma L, Xiang L, Yao Y. CGRP-alpha application: a potential treatment to improve osseoperception of endosseous dental implants. Med Hypotheses, 2013, 81(2): 297-299.

[37]

Yuan Q, Gong P, Tan Z. Schwann cell graft: a method to promote sensory responses of osseointegrated implants. Med Hypotheses, 2007, 69(4): 800-803.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/