In vitro analysis of riboflavin-modified, experimental, two-step etch-and-rinse dentin adhesive: Fourier transform infrared spectroscopy and micro-Raman studies

Umer Daood , Chan Swee Heng , Jennifer Neo Chiew Lian , Amr S Fawzy

International Journal of Oral Science ›› 2015, Vol. 7 ›› Issue (2) : 110 -124.

PDF
International Journal of Oral Science ›› 2015, Vol. 7 ›› Issue (2) : 110 -124. DOI: 10.1038/ijos.2014.49
Article

In vitro analysis of riboflavin-modified, experimental, two-step etch-and-rinse dentin adhesive: Fourier transform infrared spectroscopy and micro-Raman studies

Author information +
History +
PDF

Abstract

The strength of dental resin-based adhesives could be improved by adding light-activated riboflavin (RF, also known as vitamin B2). Amr Fawzy and his team at the National University of Singapore, analysed the resin–dentin interface of human molars in which dentin was restored with adhesives containing different concentrations of RF. Following storage of the restored teeth for up to nine months in artificial saliva, they found that the strongest bonds formed with adhesives containing 3% RF. Scanning electron microscopy showed that this was due to RF’s crosslinking effect on dentin collagen fibrils. This is consistent with their previous findings that dentin pre-treatment with RF strengthens the collagen network. Adding 3% light-activated RF to dentin adhesives could make dental composite restorations more long-lasting without increasing the number of clinical steps required.

Keywords

bond failure / crosslinking / degree of conversion / dentin / experimental adhesive / riboflavin

Cite this article

Download citation ▾
Umer Daood, Chan Swee Heng, Jennifer Neo Chiew Lian, Amr S Fawzy. In vitro analysis of riboflavin-modified, experimental, two-step etch-and-rinse dentin adhesive: Fourier transform infrared spectroscopy and micro-Raman studies. International Journal of Oral Science, 2015, 7(2): 110-124 DOI:10.1038/ijos.2014.49

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Tay FR, Pashley DH. Dental adhesives of the future. J Adhes Dent, 2002, 4(2): 91-103.

[2]

Vargas MA, Cobb DS, Denehy GE. Interfacial micromorphology and shear bond strength of single-bottle primer/adhesives. Dent Mater, 1997, 13(5): 316-324.

[3]

Nakabayashi N, Ashizawa M, Nakamura M. Identification of a resin–dentin hybrid layer in vital human dentin created in vivo: durable bonding to vital dentin. Quintessence Int, 1992, 23(2): 135-141.

[4]

Breschi L, Mazzoni A, Nato F. Chlorhexidine stabilizes the adhesive interface: a 2-year in vitro study. Dent Mater, 2010, 26(4): 320-325.

[5]

Wang Y, Spencer P. Hybridization efficiency of the adhesive/dentin interface with wet bonding. J Dent Res, 2003, 82(2): 141-145.

[6]

Van Meerbeek B, Yoshihara K, Yoshida Y. State of the art of self-etch adhesives. Dent Mater, 2011, 27(1): 17-28.

[7]

Nishitani Y, Yoshiyama M, Wadgaonkar B. Activation of gelatinolytic/collagenolytic activity in dentin by self-etching adhesives. Eur J Oral Sci, 2006, 114(2): 160-166.

[8]

Fang M, Liu R, Xiao Y. Biomodification to dentin by a natural crosslinker improved the resin–dentin bonds. J Dent, 2012, 40(6): 458-466.

[9]

Fratzl P, Gupta H, Paschalis E. Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem, 2004, 14(1): 2115-2123.

[10]

Gelse K, Pöschl E, Aigner T. Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev, 2003, 55(12): 1531-1546.

[11]

Bedran-Russo AK, Yoo KJ, Ema KC. Mechanical properties of tannic-acid-treated dentin matrix. J Dent Res, 2009, 88(9): 807-811.

[12]

Tezvergil-Mutluay A, Agee KA, Hoshika T. The requirement of zinc and calcium ions for functional MMP activity in demineralized dentin matrices. Dent Mater, 2010, 26(11): 1059-1067.

[13]

Wallace DG, Rosenblatt J. Collagen gel systems for sustained delivery and tissue engineering. Adv Drug Deliv Rev, 2003, 55(12): 1631-1649.

[14]

Han B, Jaurequi J, Tang BW. Proanthocyanidin: a natural crosslinking reagent for stabilizing collagen matrices. J Biomed Mater Res A, 2003, 65(1): 118-124.

[15]

Choe E, Min DB. Chemistry and reactions of reactive oxygen species in foods. Crit Rev Food Sci Nutr, 2006, 46(1): 1-22.

[16]

Slifkin MA. Interaction of amino-acids with riboflavin. Nature, 1963, 197: 275-276.

[17]

Matheson IB, Etheridge RD, Kratowich NR. The quenching of singlet oxygen by amino acids and proteins. Photochem Photobiol, 1975, 21(3): 165-171.

[18]

Snibson GR. Collagen cross-linking: a new treatment paradigm in corneal disease – a review. Clin Experiment Ophthalmol, 2010, 38(2): 141-153.

[19]

Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-A-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol, 2003, 135(5): 620-627.

[20]

Fawzy A, Nitisusanta L, Iqbal K. Characterization of riboflavin-modified dentin collagen matrix. J Dent Res, 2012, 91(11): 1049-1054.

[21]

Fawzy AS, Nitisusanta LI, Iqbal K. Riboflavin as a dentin crosslinking agent: ultraviolet A versus blue light. Dent Mater, 2012, 28(12): 1284-1291.

[22]

Bellamy LJ. The infrared spectra of complex molecules, 1975 London: Chapman and Hall 37-148.

[23]

Spencer P, Wang Y, Walker MP. Interfacial chemistry of the dentin/adhesive bond. J Dent Res, 2000, 79(7): 1458-1463.

[24]

Wieliczka DM, Kruger MB, Spencer P. Raman imaging of dental adhesive diffusion. Appl Spect, 1997, 51: 1593-1596.

[25]

Van Meerbeek B, Mohrbacher H, Celis JP. Chemical characterization of the resin–dentin interface by micro-Raman spectroscopy. J Dent Res, 1993, 72(10): 1423-1428.

[26]

Hanlon EB, Manoharan R, Koo TW. Prospects for in vivo Raman spectroscopy. Phys Med Biol, 2000, 45(2): R1-R59.

[27]

Ye Q, Spencer P, Wang Y. Relationship of solvent to the photopolymerization process, properties, and structure in model dentin adhesives. J Biomed Mater Res A, 2007, 80(2): 342-350.

[28]

Park J, Ye Q, Topp EM. Effect of photoinitiator system and water content on dynamic mechanical properties of a light-cured bisGMA/HEMA dental resin. J Biomed Mater Res A, 2010, 93(4): 1245-1251.

[29]

Arı H, Dönmez N, Belli S. Effect of artificial saliva contamination on bond strength to pulp chamber dentin. Eur J Dent, 2008, 2(2): 86-90.

[30]

Heymann HO, Bayne SC. Current concepts in dentin bonding: focusing on dentinal adhesion factors. J Am Dent Assoc, 1993, 124(5): 26-36.

[31]

Epasinghe DJ, Yiu CK, Burrow MF. Effect of proanthocyanidin incorporation into dental adhesive resin on resin–dentine bond strength. J Dent, 2012, 40(3): 173-180.

[32]

Yoshida T, Yamaguchi K, Tsubota K. Effect of metal conditioners on polymerization behavior of bonding agents. J Oral Sci, 2005, 47(4): 171-175.

[33]

Heigl JJ, Bell MF, White JN. Application of infrared spectroscopy to the analysis of liquid hydrocarbons. Anal Chem, 1947, 19(5): 293-298.

[34]

Jose P, Sakhamuri S, Sampath V. Degree of conversion of two dentin bonding agents with and without a desensitizing agent using fourier transform infrared spectroscopy: an in vitro study. J Conserv Dent, 2011, 14(3): 302-305.

[35]

Xu C, Yao X, Walker MP. Chemical/molecular structure of the dentin–enamel junction is dependent on the intratooth location. Calcif Tissue Int, 2009, 84(3): 221-228.

[36]

Xu C, Wang Y. Collagen cross linking increases its biodegradation resistance in wet dentin bonding. J Adhes Dent, 2012, 14(1): 11-18.

[37]

Ozaki M, Suzuki M, Itoh K. Laser-Raman spectroscopic study of the adhesive interface: analysis between 4-META/MMA-TBB resin and bovine or human dentin. Dent Mater J, 1992, 11(1): 70-76.

[38]

Rehman I, Smith R, Hench LL. Structural evaluation of human and sheep bone and comparison with synthetic hydroxyapatite by FT-Raman spectroscopy. J Biomed Mater Res, 1995, 29(10): 1287-1294.

[39]

Wang Y, Spencer P. Continuing etching of an all-in-one adhesive in wet dentin tubules. J Dent Res, 2005, 84(4): 350-354.

[40]

Sano H, Yoshikawa T, Pereira PN. Long-term durability of dentin bonds made with a self-etching primer, in vivo. J Dent Res, 1999, 78(4): 906-911.

[41]

Sano H, Takatsu T, Ciucchi B. Tensile properties of resin-infiltrated demineralized human dentin. J Dent Res, 1995, 74(4): 1093-1102.

[42]

de Munck J, Van Landuyt K, Peumans M. A critical review of the durability of adhesion to tooth tissue: methods and results. J Dent Res, 2005, 84(2): 118-132.

[43]

Okada Y, Naka K, Kawamura K. Localization of matrix metalloproteinase 9 (92-kilodalton gelatinase/type IV collagenase = gelatinase B) in osteoclasts: implications for bone resorption. Lab Invest, 1995, 72(3): 311-322.

[44]

Oster G, Holmstrom B. Riboflavin as an electron donor in photochemical reactions. J Am Chem Soc, 1961, 83(8): 1867-1871.

[45]

Edwards AM, Silva E. Effect of visible light on selected enzymes, vitamins and amino acids. J Photochem Photobiol B, 2001, 63(1/2/3): 126-131.

[46]

Cova A, Breschi L, Nato F. Effect of UVA-activated riboflavin on dentin bonding. J Dent Res, 2011, 90(12): 1439-1445.

[47]

Sadek FT, Goracci C, Cardoso PE. Microtensile bond strength of current dentin adhesives measured immediately and 24 hours after application. J Adhes Dent, 2005, 7(4): 297-302.

[48]

Salvio LA, Hipólito VD, Martins AL. Hybridization quality and bond strength of adhesive systems according to interaction with dentin. Eur J Dent, 2013, 7(3): 315-326.

[49]

Jose P, Sakhamuri S, Sampath V. Degree of conversion of two dentin bonding agents with and without a desensitizing agent using Fourier transform infrared spectroscopy: an in vitro study. J Conserv Dent, 2011, 14(3): 302-305.

[50]

Kohlhaas M, Spoerl E, Schilde T. Biomechanical evidence of the distribution of cross-links in corneas treated with riboflavin and ultraviolet A light. J Cataract Refract Surg, 2006, 32(2): 279-283.

[51]

Spoerl E, Mrochen M, Sliney D. Safety of UVA–riboflavin cross-linking of the cornea. Cornea, 2007, 26(4): 385-389.

[52]

Hashimoto M, Ohno H, Sano H. In vitro degradation of resin–dentin bonds analyzed by microtensile bond test, scanning and transmission electron microscopy. Biomaterials, 2003, 24(21): 3795-3803.

[53]

Osorio R, Pisani-Proenca J, Erhardt MC. Resistance of ten contemporary adhesives to resin–dentine bond degradation. J Dent, 2008, 36(2): 163-169.

[54]

Fraser RD, MacRae TP, Suzuki E. Chain conformation in the collagen molecule. J Mol Biol, 1979, 129(3): 463-481.

[55]

McCall AS, Kraft S, Edelhauser HF. Mechanisms of corneal tissue cross-linking in response to treatment with topical riboflavin and long-wavelength ultraviolet radiation (UVA). Invest Ophthalmol Vis Sci, 2010, 51(1): 129-138.

[56]

Xu C, Wang Y. Cross-linked demineralized dentin maintains its mechanical stability when challenged by bacterial collagenase. J Biomed Mater Res Part B Appl Biomater, 2011, 96(2): 242-248.

[57]

Carrilho MR, Geraldeli S, Tay F. In vivo preservation of the hybrid layer by chlorhexidine. J Dent Res, 2007, 86(6): 529-533.

[58]

Nakabayashi N, Pashley DH. Hybridization of dental hard tissues. Quint Pub, 1998, 1: 65-73.

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/