Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose

Eva-Maria Decker , Christian Klein , Dimitri Schwindt , Christiane von Ohle

International Journal of Oral Science ›› 2014, Vol. 6 ›› Issue (4) : 195 -204.

PDF
International Journal of Oral Science ›› 2014, Vol. 6 ›› Issue (4) : 195 -204. DOI: 10.1038/ijos.2014.38
Article

Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose

Author information +
History +
PDF

Abstract

Sucrose sugar and xylitol sweetener both activate genes involved in tooth decay in a bacterium commonly found in the human mouth. Eva-Maria Decker and her colleagues at the University of Tübingen, Germany, cultured Streptococcus mutans in a glucose-rich broth and in the same broth containing sucrose or xylitol. The bacteria formed complex communities called biofilms under all three conditions. The presence of sucrose increased the bacteria’s metabolic activity throughout the various biofilm layers. Despite previous claims that xylitol helps prevent cavities, the natural sweetener did not affect bacterial viability. Both sucrose- and xylitol-supplemented media led to increased expression of several genes involved in biofilm formation. The study, one of only a few concerning the effects of xylitol on S. mutans biofilms, calls into question the effectiveness of xylitol in preventing tooth decay.

Keywords

biofilms / 5-cyano-2,3-ditolyl tetrazolium chloride / extracellular polysaccharides / gene expression / Streptococcus mutans / sucrose / viability / xylitol

Cite this article

Download citation ▾
Eva-Maria Decker, Christian Klein, Dimitri Schwindt, Christiane von Ohle. Metabolic activity of Streptococcus mutans biofilms and gene expression during exposure to xylitol and sucrose. International Journal of Oral Science, 2014, 6(4): 195-204 DOI:10.1038/ijos.2014.38

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ten Cate JM. Biofilms, a new approach to the microbiology of dental plaque. Odontology, 2006, 94(1): 1-9.

[2]

Hojo K, Nagaoka S, Ohshima T. Bacterial interactions in dental biofilm development. J Dent Res, 2009, 88(11): 982-990.

[3]

Stoodley P, Sauer K, Davies DG. Biofilms as complex differentiated communities. Annu Rev Microbiol, 2002, 56: 187-209.

[4]

Forssten SD, Björklund M, Ouwehand AC. Streptococcus mutans, caries and simulation models. Nutrients, 2010, 2(3): 290-298.

[5]

Paes Leme AF, Koo H, Bellato CM. The role of sucrose in cariogenic dental biofilm formation—new insight. J Dent Res, 2006, 85(10): 878-887.

[6]

Narisawa N, Kawarai T, Suzuki N. Competence-dependent endogenous DNA rearrangement and uptake of extracellular DNA give a natural variant of Streptococcus mutans without biofilm formation. J Bacteriol, 2011, 193(19): 5147-5154.

[7]

Takahashi N, Nyvad B. Caries ecology revisited: microbial dynamics and the caries process. Caries Res, 2008, 42(6): 409-418.

[8]

Trahan L, Néron S, Bareil M. Intracellular xylitol-phosphate hydrolysis and efflux of xylitol in Streptococcus sobrinus. Oral Microbiol Immunol, 1991, 6(1): 41-50.

[9]

Xiao J, Klein MI, Falsetta ML. The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS Pathog, 2012, 8(4): e1002623.

[10]

Klein MI, DeBaz L, Agidi S. Dynamics of Streptococcus mutans transcriptome in response to starch and sucrose during biofilm development. PLoS One, 2010, 5(10): e13478.

[11]

Rolerson E, Swick A, Newlon L. The SloR/Dlg metalloregulator modulates Streptococcus mutans virulence gene expression. J Bacteriol, 2006, 188(14): 5033-5044.

[12]

Senadheera MD, Guggenheim B, Spatafora GA. A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J Bacteriol, 2005, 187(12): 4064-4076.

[13]

Shemesh M, Tam A, Steinberg D. Expression of biofilm-associated genes of Streptococcus mutans in response to glucose and sucrose. J Med Microbiol, 2007, 56(Pt 11): 1528-1535.

[14]

Shibata Y, Kawada M, Nakano Y. Identification and characterization of an autolysin-encoding gene of Streptococcus mutans. Infect Immun, 2005, 73(6): 3512-3520.

[15]

Banu LD, Conrads G, Rehrauer H. The Streptococcus mutans serine/threonine kinase, PknB, regulates competence development, bacteriocin production, and cell wall metabolism. Infect Immun, 2010, 78(5): 2209-2220.

[16]

Shemesh M, Tam A, Kott-Gutkowski M. DNA-microarrays identification of Streptococcus mutans genes associated with biofilm thickness. BMC Microbiol, 2008, 8: 236.

[17]

Sztajer H, Lemme A, Vilchez R. Autoinducer-2-regulated genes in Streptococcus mutans UA159 and global metabolic effect of the luxS mutation. J Bacteriol, 2008, 190(1): 401-415.

[18]

Shemesh M, Tam A, Feldman M. Differential expression profiles of Streptococcus mutans ftf, gtf and vicR genes in the presence of dietary carbohydrates at early and late exponential growth phases. Carbohydr Res, 2006, 341(12): 2090-2097.

[19]

Gong Y, Tian XL, Sutherland T. Global transcriptional analysis of acid-inducible genes in Streptococcus mutans: multiple two-component systems involved in acid adaptation. Microbiology, 2009, 155(Pt 10): 3322-3332.

[20]

Mäkinen KK. Sugar alcohol sweeteners as alternatives to sugar with special consideration of xylitol. Med Princ Pract, 2011, 20(4): 303-320.

[21]

Tanzer JM. Xylitol chewing gum and dental caries. Int Dent J, 1995, 45(1 Suppl 1): 65-76.

[22]

Trahan L. Xylitol: a review of its action on mutans streptococci and dental plaque—its clinical significance. Int Dent J, 1995, 45(1 Suppl 1): 77-92.

[23]

Giertsen E, Arthur RA, Guggenheim B. Effects of xylitol on survival of mutans streptococci in mixed-six-species in vitro biofilms modelling supragingival plaque. Caries Res, 2011, 45(1): 31-39.

[24]

Scheie AA, Fejerskov O, Danielsen B. The effects of xylitol-containing chewing gums on dental plaque and acidogenic potential. J Dent Res, 1998, 77(7): 1547-1552.

[25]

Anderson SA, Sissons CH, Coleman MJ. Application of carbon source utilization patterns to measure the metabolic similarity of complex dental plaque biofilm microcosms. Appl Environ Microbiol, 2002, 68(11): 5779-5783.

[26]

Decker EM, Weiger R, von Ohle C. Susceptibility of planktonic versus attached Streptococcus sanguinis cells to chlorhexidine. Clin Oral Investig, 2003, 7(2): 98-102.

[27]

Willems G, Lambrechts P, Braem M. The surface roughness of enamel-to-enamel contact areas compared with the intrinsic roughness of dental resin composites. J Dent Res, 1991, 70(9): 1299-1305.

[28]

Decker EM. The ability of direct fluorescence-based, two-colour assays to detect different physiological states of oral streptococci. Lett Appl Microbiol, 2001, 33(3): 188-192.

[29]

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{ - \Delta \Delta C_{\rm T} }$ method. Methods, 2001, 25(4): 402-408.

[30]

Aires CP, Tabchoury CP, del bel Cury AA. Effect of sucrose concentration on dental biofilm formed in situ and on enamel demineralization. Caries Res, 2006, 40(1): 28-32.

[31]

Zhu M, Takenaka S, Sato M. Influence of starvation and biofilm formation on acid resistance of Streptococcus mutans. Oral Microbiol Immunol, 2001, 16(1): 24-27.

[32]

Marttinen AM, Ruas-Madiedo P, Hidalgo-Cantabrana C. Effects of xylitol on xylitol-sensitive versus xylitol-resistant Streptococcus mutans strains in a three-species in vitro biofilm. Curr Microbiol, 2012, 65(3): 237-243.

[33]

Badet C, Furiga A, Thébaud N. Effect of xylitol on an in vitro model of oral biofilm. Oral Health Prev Dent, 2008, 6(4): 337-341.

[34]

Söderling EM, Ekman TC, Taipale TJ. Growth inhibition of Streptococcus mutans with low xylitol concentrations. Curr Microbiol, 2008, 56(4): 382-385.

[35]

Lif Holgerson P, Stecksén-Blicks C, Sjöström I. Xylitol concentration in saliva and dental plaque after use of various xylitol-containing products. Caries Res, 2006, 40(5): 393-397.

[36]

Tapiainen T, Renko M, Kontiokari T. Xylitol concentrations in the saliva of children after chewing xylitol gum or consuming a xylitol mixture. Eur J Clin Microbiol Infect Dis, 2002, 21(1): 53-55.

[37]

Hanada N, Kuramitsu HK. Isolation and characterization of the Streptococcus mutans gtfC gene, coding for synthesis of both soluble and insoluble glucans. Infect Immun, 1988, 56(8): 1999-2005.

[38]

Nakano K, Nomura R, Nemoto H. Protein antigen in serotype k Streptococcus mutans clinical isolates. J Dent Res, 2008, 87(10): 964-968.

[39]

Trahan L, Bareil M, Gauthier L. Transport and phosphorylation of xylitol by a fructose phosphotransferase system in Streptococcus mutans. Caries Res, 1985, 19(1): 53-63.

[40]

Assev S, Rölla G. Further studies on the growth inhibition of Streptococcus mutans OMZ 176 by xylitol. Acta Pathol Microbiol Immunol Scand B, 1986, 94(2): 97-102.

[41]

Lee YE, Choi YH, Jeong SH. Morphological changes in Streptococcus mutans after chewing gum containing xylitol for twelve months. Curr Microbiol, 2009, 58(4): 332-337.

[42]

van Loveren C. Sugar alcohols: what is the evidence for caries-preventive and caries-therapeutic effects. Caries Res, 2004, 38(3): 286-293.

[43]

Tapiainen T, Kontiokari T, Sammalkivi L. Effect of xylitol on growth of Streptococcus pneumoniae in the presence of fructose and sorbitol. Antimicrob Agents Chemother, 2001, 45(1): 166-169.

[44]

Kurola P, Tapiainen T, Sevander J. Effect of xylitol and other carbon sources on Streptococcus pneumoniae biofilm formation and gene expression in vitro. APMIS, 2011, 119(2): 135-142.

[45]

Pal A, Paul AK. Optimization of cultural conditions for production of extracellular polymeric substances (EPS) by serpentine rhizobacterium Cupriavidus pauculus KPS 201. J Polym, 2013, 2013: 692374.

[46]

Sims IM, Frese SA, Walter J. Structure and functions of exopolysaccharide produced by gut commensal Lactobacillus reuteri 100-23. ISME J, 2011, 5(7): 1115-1124.

[47]

Decker EM, Dietrich I, Klein C. Dynamic production of soluble extracellular polysaccharides by Streptococcus mutans. Int J Dent, 2011, 2011: 435830.

[48]

Bowen WH. Do we need to be concerned about dental caries in the coming millennium. Crit Rev Oral Biol Med, 2002, 13(2): 126-131.

[49]

Pecharki GD, Cury JA, Paes Leme AF. Effect of sucrose containing iron (II) on dental biofilm and enamel demineralization in situ. Caries Res, 2005, 39(2): 123-129.

[50]

Kreth J, Zhu L, Merritt J. Role of sucrose in the fitness of Streptococcus mutans. Oral Microbiol Immunol, 2008, 23(3): 213-219.

[51]

Yamashita Y, Bowen WH, Burne RA. Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect Immun, 1993, 61(9): 3811-3817.

[52]

Tsumori H, Kuramitsu H. The role of the Streptococcus mutans glucosyltransferases in the sucrose-dependent attachment to smooth surfaces: essential role of the GtfC enzyme. Oral Microbiol Immunol, 1997, 12(5): 274-280.

[53]

Renye JA Jr, Piggot PJ, Daneo-Moore L. Persistence of Streptococcus mutans in stationary-phase batch cultures and biofilms. Appl Environ Microbiol, 2004, 70(10): 6181-6187.

[54]

Koo H, Xiao J, Klein MI. Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms. J Bacteriol, 2010, 192(12): 3024-3032.

[55]

Gu H, Fan D, Gao J. Effect of ZnCl2 on plaque growth and biofilm vitality. Arch Oral Biol, 2012, 57(4): 369-375.

[56]

Zaura-Arite E, van Marle J, ten Cate JM. Conofocal microscopy study of undisturbed and chlorhexidine-treated dental biofilm. J Dent Res, 2001, 80(5): 1436-1440.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/