Comparison of the rheological properties of four root canal sealers

Seok Woo Chang , Young-Kyu Lee , Qiang Zhu , Won Jun Shon , Woo Cheol Lee , Kee Yeon Kum , Seung Ho Baek , In Bog Lee , Bum-Soon Lim , Kwang Shik Bae

International Journal of Oral Science ›› 2014, Vol. 6 ›› Issue (1) : 56 -61.

PDF
International Journal of Oral Science ›› 2014, Vol. 6 ›› Issue (1) : 56 -61. DOI: 10.1038/ijos.2014.33
Article

Comparison of the rheological properties of four root canal sealers

Author information +
History +
PDF

Abstract

The ability of root canal sealers to flow into and seal a root canal can best be measured with a strain-controlled rheometer. Researchers usually measure sealer viscosity using the simple press method, that is, by pressing the material between two glass plates and measuring the diameter of the resulting disc. Rheometers, however, can measure the viscosity of a complex fluid as it changes with strain, time and temperature. Kwang Shik Bae of the Seoul National University School of Dentistry, Korea, and colleagues tested four sealers (Capseal, AH Plus, Sealapex, and Pulp Canal Sealer EWT) using both methods. The rheometer measured sealer viscosity more sensitively than the simple press method. The rheometer data also showed how the viscosity of sealers changed as they set, indicating effective working times, and how increased temperature affected their chemical properties.

Keywords

Capseal / rheological property / root canal sealer / strain-controlled rheometer

Cite this article

Download citation ▾
Seok Woo Chang, Young-Kyu Lee, Qiang Zhu, Won Jun Shon, Woo Cheol Lee, Kee Yeon Kum, Seung Ho Baek, In Bog Lee, Bum-Soon Lim, Kwang Shik Bae. Comparison of the rheological properties of four root canal sealers. International Journal of Oral Science, 2014, 6(1): 56-61 DOI:10.1038/ijos.2014.33

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brothman P. A comparative study of the vertical and the lateral condensation of gutta-percha. J Endod, 1981, 7(1): 27-30.

[2]

Lee BS, Wang CY, Fang YY. A novel urethane acrylate-based root canal sealer with improved degree of conversion, cytotoxicity, bond strengths, solubility, and dimensional stability. J Endod, 2011, 37(2): 246-249.

[3]

Kontakiotis EG, Tzanetakis GN, Loizides AL. A comparative study of contact angles of four different root canal sealers. J Endod, 2007, 33(3): 299-302.

[4]

Ersahan S, Aydin C. Dislocation resistance of iRoot SP, a calcium silicate-based sealer, from radicular dentine. J Endod, 2010, 36(12): 2000-2002.

[5]

Balguerie E, van der Sluis L, Vallaeys K. Sealer penetration and adaptation in the dentinal tubules: a scanning electron microscopic study. J Endod, 2011, 37(11): 1576-1579.

[6]

Loushine BA, Bryan TE, Looney SW. Setting properties and cytotoxicity evaluation of a premixed bioceramic root canal sealer. J Endod, 2011, 37(5): 673-677.

[7]

Nawal RR, Parande M, Sehgal R. A comparative evaluation of antimicrobial efficacy and flow properties for Epiphany, Guttaflow and AH-Plus sealer. Int Endod J, 2011, 44(4): 307-313.

[8]

Marin-Bauza GA, Rached-Junior FJ, Souza-Gabriel AE. Physicochemical properties of methacrylate resin-based root canal sealers. J Endod, 2010, 36(9): 1531-1536.

[9]

Siqueira JF Jr, Favieri A, Gahyva SM. Antimicrobial activity and flow rate of newer and established root canal sealers. J Endod, 2000, 26(5): 274-277.

[10]

Baldi JV, Bernardes RA, Duarte MA. Variability of physicochemical properties of an epoxy resin sealer taken from different parts of the same tube. Int Endod J, 2012, 45(10): 915-920.

[11]

Kuga MC, Faria G, So MV. The impact of the addition of iodoform on the physicochemical properties of an epoxy-based endodontic sealer. J Appl Oral Sci, 2014, 22(2): 125-130.

[12]

Tanomaru-Filho M, Bosso R, Viapiana R. Radiopacity and flow of different endodontic sealers. Acta Odontol Latinoam, 2013, 26(2): 121-125.

[13]

Almeida JF, Gomes BP, Ferraz CC. Filling of artificial lateral canals and microleakage and flow of five endodontic sealers. Int Endod J, 2007, 40(9): 692-699.

[14]

Gambarini G, Testarelli L, Pongione G. Radiographic and rheological properties of a new endodontic sealer. Aust Endod J, 2006, 32(1): 31-34.

[15]

Fonzi M, Fonzi L, Lungarella G. Biocompatibility and physico-mechanical properties of the new Venezia root canal sealer. In vivo and In vivo test according international standards. Minerva Stomatol, 2001 Italian 91-100.

[16]

Siqueira FJ Jr, Fraga RC, Garcia PF. Evaluation of sealing ability, pH and flow rate of three calcium hydroxide-based sealers. Endod Dent Traumatol, 1995, 11(5): 225-228.

[17]

Ono K, Matsumoto K. Physical properties of CH61, a newly developed root canal sealer. J Endod, 1998, 24(4): 244-247.

[18]

Lacey S, Pitt Ford TR, Watson TF. A study of the rheological properties of endodontic sealers. Int Endod J, 2005, 38(8): 499-504.

[19]

Lacey S, Pitt Ford TR, Yuan XF. The effect of temperature on viscosity of root canal sealers. Int Endod J, 2006, 39(11): 860-866.

[20]

International Standardization Organization. ISO 6876: dental root canal sealing materials. Geneva: International Standardization Organization, 2001.

[21]

Kaplan AE, Ormaechea MF, Picca M. Rheological properties and biocompatibility of endodontic sealers. Int Endod J, 2003, 36(8): 527-532.

[22]

Barnes HA, Hutton JF, Walters K. Rheology of polymeric liquids. Introduction to rheology, 2001 Amsterdam

[23]

Bae KH, Chang SW, Bae KS. Evaluation of pH and calcium ion release in capseal I and II and in two other root canal sealers. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2011, 112(5): e23-e28.

[24]

Yang SE, Baek SH, Lee W. In vitro evaluation of the sealing ability of newly developed calcium phosphate-based root canal sealer. J Endod, 2007, 33(8): 978-981.

[25]

Kim JS, Baek SH, Bae KS. In vivo study on the biocompatibility of newly developed calcium phosphate-based root canal sealers. J Endod, 2004, 30(10): 708-711.

[26]

Bae WJ, Chang SW, Lee SI. Human periodontal ligament cell response to a newly developed calcium phosphate-based root canal sealer. J Endod, 2010, 36(10): 1658-1663.

[27]

Lee IB, Son HH, Um CM. Rheologic properties of flowable, conventional hybrid, and condensable composite resins. Dent Mater, 2003, 19(4): 298-307.

[28]

Ellakwa A, Cho N, Lee IB. The effect of resin matrix composition on the polymerization shrinkage and rheological properties of experimental dental composites. Dent Mater, 2007, 23(10): 1229-1235.

[29]

Lee IB, Min SH, Kim SY. Slumping tendency and rheological properties of flowable composites. Dent Mater, 2010, 26(5): 443-448.

[30]

Kim MH, Min SH, Ferracane J. Initial dynamic viscoelasticity change of composites during light curing. Dent Mater, 2010, 26(5): 463-470.

[31]

Beun S, Bailly C, Dabin A. Rheological properties of experimental Bis-GMA/TEGDMA flowable resin composites with various macrofiller/microfiller ratio. Dent Mater, 2009, 25(2): 198-205.

[32]

German MJ, Carrick TE, McCabe JF. Surface detail reproduction of elastomeric impression materials related to rheological properties. Dent Mater, 2008, 24(7): 951-956.

[33]

Grossman LI. The effect of pH of rosin on setting time of root canal cements. J Endod, 1982, 8(7): 326-327.

[34]

Ingle JI, Bakland LK, Baumgartner JC. Ingle's endodontics, 2008 Lewiston

[35]

Miyamoto Y, Ishikawa K, Takechi M. Tissue response to fast-setting calcium phosphate cement in bone. J Biomed Mater Res, 1997, 37(4): 457-464.

[36]

Caicedo R, von Fraunhofer JA. The properties of endodontic sealer cements. J Endod, 1988, 14(11): 527-534.

[37]

Allan NA, Walton RC, Schaeffer MA. Setting times for endodontic sealers under clinical usage and in vitro conditions. J Endod, 2001, 27(6): 421-423.

[38]

Desai S, Chandler N. Calcium hydroxide-based root canal sealers: a review. J Endod, 2009, 35(4): 475-480.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/