Expression of cyclin-dependent kinase inhibitor 2A 16, tumour protein 53 and epidermal growth factor receptor in salivary gland carcinomas is not associated with oncogenic virus infection

Ellen Senft , Juliana Lemound , Angelika Stucki-Koch , Nils-Claudius Gellrich , Hans Kreipe , Kais Hussein

International Journal of Oral Science ›› 2014, Vol. 6 ›› Issue (1) : 18 -22.

PDF
International Journal of Oral Science ›› 2014, Vol. 6 ›› Issue (1) : 18 -22. DOI: 10.1038/ijos.2014.28
Article

Expression of cyclin-dependent kinase inhibitor 2A 16, tumour protein 53 and epidermal growth factor receptor in salivary gland carcinomas is not associated with oncogenic virus infection

Author information +
History +
PDF

Abstract

Viruses that have been linked with various cancers of the head and neck do not appear to play a role in salivary gland tumors. Certain subtypes of human papilloma virus (HPV), Epstein-Barr virus (EBV) and cytomegalovirus (CMV) can disrupt cellular signaling in a way that promotes uncontrolled growth. Infections with these viruses are common in certain tumors of the mouth, nose and throat. Kais Hussein’s team at Hannover Medical School in Germany searched for viruses in tissue samples of salivary gland tumors from 77 patients. HPV, EBV and CMV were not present in any of the samples, regardless of tumor type and whether a tumor was benign or malignant. The researchers observed abnormal activity in the signaling pathways normally affected by these viruses but concluded that these changes arose from other physiological disruptions.

Keywords

cyclin-dependent kinase inhibitor 2A / human papillomavirus / salivary gland carcinoma

Cite this article

Download citation ▾
Ellen Senft, Juliana Lemound, Angelika Stucki-Koch, Nils-Claudius Gellrich, Hans Kreipe, Kais Hussein. Expression of cyclin-dependent kinase inhibitor 2A 16, tumour protein 53 and epidermal growth factor receptor in salivary gland carcinomas is not associated with oncogenic virus infection. International Journal of Oral Science, 2014, 6(1): 18-22 DOI:10.1038/ijos.2014.28

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Riechelmann H. [Human papilloma virus in head and neck cancer]. Laryngorhinootologie, 2010, 89(1): 43-48.

[2]

Allen CT, Lewis JS Jr, El-Mofty SK. Human papillomavirus and oropharynx cancer: biology, detection and clinical implications. Laryngoscope, 2010, 120(9): 1756-1772.

[3]

Isayeva T, Li Y, Maswahu D. Human papillomavirus in non-oropharyngeal head and neck cancers: a systematic literature review. Head Neck Pathol, 2012, 6(Suppl 1): S104-S120.

[4]

Kaneda A, Matsusaka K, Aburatani H. Epstein-Barr virus infection as an epigenetic driver of tumorigenesis. Cancer Res, 2012, 72(14): 3445-3450.

[5]

Hussein K, Maecker-Kolhoff B, Klein C. [Transplant-associated lymphoproliferation]. Pathologe, 2011, 32(2): 152-158.

[6]

Wax TD, Layfield LJ, Zaleski S. Cytomegalovirus sialadenitis in patients with the acquired immunodeficiency syndrome: a potential diagnostic pitfall with fine-needle aspiration cytology. Diagn Cytopathol, 1994, 10(2): 169-174.

[7]

Melnick M, Sedghizadeh PP, Allen CM. Human cytomegalovirus and mucoepidermoid carcinoma of salivary glands: cell-specific localization of active viral and oncogenic signaling proteins is confirmatory of a causal relationship. Exp Mol Pathol, 2012, 92(1): 118-125.

[8]

Hafed L, Farag H, Shaker O. Is human papilloma virus associated with salivary gland neoplasms? An in situ-hybridization study. Arch Oral Biol, 2012, 57(9): 1194-1199.

[9]

Vageli D, Sourvinos G, Ioannou M. High-risk human papillomavirus (HPV) in parotid lesions. Int J Biol Markers, 2007, 22(4): 239-244.

[10]

Boland JM, McPhail ED, García JJ. Detection of human papilloma virus and p16 expression in high-grade adenoid cystic carcinoma of the head and neck. Mod Pathol, 2012, 25(4): 529-536.

[11]

Isayeva T, Said-Al-Naief N, Ren Z. Salivary mucoepidermoid carcinoma: demonstration of transcriptionally active human papillomavirus 16/18. Head Neck Pathol, 2013, 7(2): 135-148.

[12]

Descamps G, Duray A, Rodriguez A. Detection and quantification of human papillomavirus in benign and malignant parotid lesions. Anticancer Res, 2012, 32(9): 3929-3932.

[13]

Brunner M, Koperek O, Wrba F. HPV infection and p16 expression in carcinomas of the minor salivary glands. Eur Arch Otorhinolaryngol, 2012, 269(10): 2265-2269.

[14]

Jour G, West K, Ghali V. Differential expression of p16(INK4A) and cyclin D1 in benign and malignant salivary gland tumors: a study of 44 Cases. Head Neck Pathol, 2013, 7(3): 224-231.

[15]

Pilatz A, Altinkilic B, Rusz A. Role of human papillomaviruses in persistent and glucocorticoid-resistant juvenile phimosis. J Eur Acad Dermatol Venereol, 2013, 27(6): 716-721.

[16]

Scharenberg C, Eckardt A, Tiede C. Expression of caspase 14 and filaggrin in oral squamous carcinoma. Head Neck Pathol, 2013, 7(4): 327-333.

[17]

Bockmeyer CL, Maegel L, Janciauskiene S. Plexiform vasculopathy of severe pulmonary arterial hypertension and microRNA expression. J Heart Lung Transplant, 2012, 31(7): 764-772.

[18]

Atula T, Grénman R, Klemi P. Human papillomavirus, Epstein–Barr virus, human herpesvirus 8 and human cytomegalovirus involvement in salivary gland tumours. Oral Oncol, 1998, 34(5): 391-395.

[19]

Rytkönen AE, Hirvikoski PP, Salo TA. Lymphoepithelial carcinoma: two case reports and a systematic review of oral and sinonasal cases. Head Neck Pathol, 2011, 5(4): 327-334.

[20]

Pollock AM, Toner M, McMenamin M. Absence of Epstein–Barr virus encoded RNA and latent membrane protein (LMP1) in salivary gland neoplasms. J Laryngol Otol, 1999, 113(10): 906-908.

[21]

Boysen T, Friborg J, Andersen A. The Inuit cancer pattern—the influence of migration. Int J Cancer, 2008, 122(11): 2568-2572.

[22]

van Monsjou HS, van Velthuysen ML, van den Brekel MW. Human papillomavirus status in young patients with head and neck squamous cell carcinoma. Int J Cancer, 2012, 130(8): 1806-1812.

[23]

von Knebel Doeberitz M, Reuschenbach M, Schmidt D. Biomarkers for cervical cancer screening: the role of p16(INK4a) to highlight transforming HPV infections. Expert Rev Proteomics, 2012, 9(2): 149-163.

[24]

Etges A, Nunes FD, Ribeiro KC. Immunohistochemical expression of retinoblastoma pathway proteins in normal salivary glands and in salivary gland tumours. Oral Oncol, 2004, 40(3): 326-331.

[25]

Shang J, Shui Y, Sheng L. Epidermal growth factor receptor and human epidermal growth receptor 2 expression in parotid mucoepidermoid carcinoma: possible implications for targeted therapy. Oncol Rep, 2008, 19(2): 435-440.

[26]

Ettl T, Schwarz S, Kleinsasser N. Overexpression of EGFR and absence of C-KIT expression correlate with poor prognosis in salivary gland carcinomas. Histopathology, 2008, 53(5): 567-577.

[27]

Bishop JA, Yonescu R, Batista D et al. Mucoepidermoid carcinoma does not harbor transcriptionally active high risk human papillomavirus even in the absence of the MAML2 translocation. Head Neck Pathol 2014; DOI: 201410.1007/s12105-014-0541-9. [Epub ahead of print].

[28]

Skálová A, Kašpírková J, Andrle P. Human papillomaviruses are not involved in the etiopathogenesis of salivary gland tumors. Cesk Patol, 2013, 49(2): 72-75.

[29]

Jour G, West K, Ghali V. Differential expression of p16 (INK4A) and cyclin D1 in benign and malignant salivary gland tumors: a study of 44 Cases. Head Neck Pathol , 2013, 7(3): 224-231.

[30]

Fatahzadeh M, Schlecht NF, Chen Z. Oral human papillomavirus detection in older adults who have human immunodeficiency virus infection. Oral Surg Oral Med Oral Pathol Oral Radiol, 2013, 115(4): 505-514.

[31]

Andersson S, Mints M, Wilander E. Results of cytology and high-risk human papillomavirus testing in females with cervical adenocarcinoma in situ. Oncol Lett, 2013, 6(1): 215-219.

[32]

Wang JL, Fang CL, Wang M. Human papillomavirus infections as a marker to predict overall survival in lung adenocarcinoma. Int J Cancer, 2014, 134(1): 65-71.

[33]

Chen YC, Chen JH, Richard K. Lung adenocarcinoma and human papillomavirus infection. Cancer, 2004, 101(6): 1428-1436.

[34]

Dziduszko A, Ozbun MA. Annexin A2 and S100A10 regulate human papillomavirus type 16 entry and intracellular trafficking in human keratinocytes. J Virol, 2013, 87(13): 7502-7515.

[35]

Surviladze Z, Sterk RT, DeHaro SA. Cellular entry of human papillomavirus type 16 involves activation of the phosphatidylinositol 3-kinase/Akt/mTOR pathway and inhibition of autophagy. J Virol, 2013, 87(5): 2508-2517.

[36]

Hanna J, Reimann JD, Haddad RI. Human papillomavirus-associated adenocarcinoma of the base of the tongue. Hum Pathol, 2013, 44(8): 1516-1523.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/