PDF
Abstract
Understanding the mechanical properties of human teeth could enhance artificial tooth development, dental scientists in China conclude in a review of recent research. Artificial teeth are required to make incisions, lacerate and grind food like natural teeth, but the perfect material to make them remains undiscovered. This deficiency is partly because of gaps in current knowledge regarding the structural and mechanical properties of the two main dental tissues, enamel and dentin. After reviewing recent research into both tissues, Xue-Dong Zhou, Hai-Yang Yu and co-workers at Sichuan University, China, recommend further investigations — particularly at the microscopic level — into the elastic mechanics and fracture-resistant qualities of dental tissues. The team believes it is important also to investigate how these properties change as people age, and how the surrounding oral environment affects tooth strength and fracturing.
Keywords
dentin
/
enamel
/
fatigue crack growth
/
fracture toughness
/
mechanical property
Cite this article
Download citation ▾
Ya-Rong Zhang, Wen Du, Xue-Dong Zhou, Hai-Yang Yu.
Review of research on the mechanical properties of the human tooth.
International Journal of Oral Science, 2014, 6(2): 61-69 DOI:10.1038/ijos.2014.21
| [1] |
He LH, Swain MV. Enamel—a “metallic-like” deformable biocomposite. J Dent, 2007, 35(5): 431-437.
|
| [2] |
Kishen A, Ramamurty U, Asundi A. Experimental studies on the nature of property gradients in the human dentine. Biomed Mater Res, 2000, 51(4): 650-659.
|
| [3] |
Cohen SR, Apter N, Jesse S. AFM investigation of mechanical properties of dentin. Isr J Chem, 2008, 48(2): 65-72.
|
| [4] |
Habelitz S, Marshall SJ, Marshall GW Jr. Mechanical properties of human dental enamel on the nanometre scale. Arch Oral Biol, 2001, 46(2): 173-183.
|
| [5] |
Kerebel B, Daculsi G, Kerebel LM. Ultrastructural studies of enamel crystallites. Dent Res, 1979, 58(special issue B): 844-851.
|
| [6] |
Poole DF, Brooks AW. The arrangement of crystallites in enamel prisms. Arch Oral Biol, 1961, 5(1): 14-26.
|
| [7] |
Garberoglio R, Brannstrom M. Scanning electron microscopic investigation of human dentinal tubules. Arch Oral Biol, 1976, 21(6): 355-371.
|
| [8] |
Yu SF, Sun HC, He ZX. [Oral histopathology]. 6th ed, 2007 Beijing 70-72.
|
| [9] |
Shu DL, Chen JB, Feng Y. [Engineering material mechanics], 2006 Beijing 2-5.
|
| [10] |
Chen ZQ, Zhang M, Zhang JK. [Oral materials], 2008 Beijing 18-19.
|
| [11] |
Loubet L, Lucas BN, Oliver WC. Some measurements of viscoelastic properties with the help of nanoindentation. NIST Spec Publ, 1995, 896: 31-34.
|
| [12] |
Shu DL, Chen JB, Feng Y. [Engineering material mechanics], 2006 Beijing 77-90.
|
| [13] |
Chen ZQ, Zhang M, Zhang JK. [Oral materials], 2008 Beijing 15.
|
| [14] |
Shu DL, Chen JB, Feng Y. [Engineering material mechanics], 2006 Beijing 57-63.
|
| [15] |
Wang JQ. [Surface engineering manual], 1998 Beijing 856-857.
|
| [16] |
Zhang TH, Yang YM. Development and application of nanohardness technique. Adv Mech, 2002, 32(6): 349-364.
|
| [17] |
Jeng YR, Lin TT, Hsu HM. Human enamel rod presents anisotropic nanotribological properties. Mech Behav Biomed, 2011, 4(4): 515-522.
|
| [18] |
He LH, Yin ZH, van Vuuren LJ. A natural functionally graded biocomposite coating—human enamel. Acta Biomater, 2013, 9(5): 6330-6337.
|
| [19] |
Cheng ZJ, Wang XM, Ge J. The mechanical anisotropy on a longitudinal section of human enamel studied by nanoindentation. J Mater Sci Mater Med, 2010, 21(6): 1811-1816.
|
| [20] |
He B, Huang S, Jing J. Measurement of hydroxyapatite density and Knoop hardness in sound human enamel and a correlational analysis between them. Arch Oral Biol, 2010, 55(2): 134-141.
|
| [21] |
Park S, Wang DH, Zhang D. Mechanical properties of human enamel as a function of age and location in the tooth. J Mater Sci Mater Med, 2008, 19(6): 2317-2324.
|
| [22] |
He LH, Swain MV. Influence of environment on the mechanical behaviour of mature human enamel. Biomaterials, 2007, 28(30): 4512-4520.
|
| [23] |
Xu HH, Smith DT, Jahanmir S. Indentation damage and mechanical properties of human enamel and dentin. J Dent Res, 1998, 77(3): 472-480.
|
| [24] |
Meredith N, Sherriff M, Setchell DJ. Measurement of the microhardness and Young's modulus of human enamel and dentine using an indentation technique. Arch Oral Biol, 1996, 41(6): 539-545.
|
| [25] |
Willems G, Celis JP, Lambrechts P. Hardness and Young's modulus determined by nanoindentation technique of filler particles of dental restorative materials compared with human enamel. J Biomed Mater Res, 1993, 27(6): 747-755.
|
| [26] |
Zheng Q, Xu H, Song F. Spatial distribution of the human enamel fracture toughness with aging. J Mech Behav Biomed Mater, 2013, 26: 148-154.
|
| [27] |
He LH, Swain MV. Understanding the mechanical behaviour of human enamel from its structural and compositional characteristics. J Mech Behav Biomed Mater, 2008, 1(1): 18-29.
|
| [28] |
Ang SF, Scholz T, Klocke A. Determination of the elastic/plastic transition of human enamel by nanoindentation. Dent Mater, 2009, 25(11): 1403-1410.
|
| [29] |
He LH, Fujisawa N, Swain MV. Elastic modulus and stress–strain response of human enamel by nano-indentation. Biomaterials, 2006, 27(24): 4388-4398.
|
| [30] |
Cuy JL MA, Livi KJ. Nanoindentation mapping of the mechanical properties of human molar tooth enamel. Arch Oral Biol, 2002, 47(4): 281-291.
|
| [31] |
Roy S, Basu B. Mechanical and tribological characterization of human tooth. Mater Charact, 2008, 59(6): 747-756.
|
| [32] |
Park S, Wang DH, Zhang D. Mechanical properties of human enamel as a function of age and location in the tooth. J Mater Sci Mater Med, 2007, 19(6): 2317-2324.
|
| [33] |
Featherstone JD, ten Cate JM, Shariati M. Comparison of artificial caries-like lesions by quantitative microradiography and microhardness profiles. Caries Res, 1983, 17(5): 385-391.
|
| [34] |
Kodaka T, Debari K, Yamada M. Correlation between microhardness and mineral content in sound human enamel. Caries Res, 1992, 26(2): 139-141.
|
| [35] |
Buchalla W, Imfeld T, Attin T. Relationship between nanohardness and mineral content of artificial carious enamel lesions. Caries Res, 2008, 42(3): 157-163.
|
| [36] |
He B, Huang SB, Jing JJ. Measurement of hydroxyapatite density and Knoop hardness in sound human enamel and a correlational analysis between them. Arch Oral Biol, 2010, 55(2): 134-141.
|
| [37] |
Gutiérrez-Salazar M, Reyes-Gasga J. Microhardness and chemical composition of human tooth. Mater Res, 2003, 6(3): 367-373.
|
| [38] |
Braly A, Darnell LA, Mann AB. The effect of prism orientation on the indentation testing of human molar enamel. Arch Oral Biol, 2007, 52(9): 856-860.
|
| [39] |
Mahoney E, Holt A, Swain M. The hardness and modulus of elasticity of primary molar teeth: an ultra-micro-indentation study. J Dent, 2000, 28(8): 589-594.
|
| [40] |
Fong H, White SN, Paine ML. Enamel structure properties controlled by engineered proteins in transgenic mice. J Bone Miner Res, 2003, 18(11): 2052-2059.
|
| [41] |
Xie ZH, Mahoney EK, Kilpatrick NM. On the structure–property relationship of sound and hypomineralized enamel. Acta Biomater, 2007, 3(6): 865-872.
|
| [42] |
Malek S, Darendeliler MA, Swain MV. Physical properties of root cementum: Part I. A new method for 3-dimensional evaluation. Am J Orthod Dentofacial Orthop, 2001, 120(2): 198-208.
|
| [43] |
Malek S, Darendeliler MA, Rex T. Physical properties of root cementum: part 2. Effect of different storage methods. Am J Orthod Dentofacial Orthop, 2003, 124(5): 561-570.
|
| [44] |
Angker L, Swain MV, Kilpatrick N. Characterising the micro-mechanical behaviour of the carious dentine of primary teeth using nano-indentation. J Biomech, 2005, 38(7): 1535-1542.
|
| [45] |
He LH, Swain MV. Nanoindentation derived stress–strain properties of dental materials. Dent Mater, 2007, 23(7): 814-821.
|
| [46] |
Ryou H, Romberg E, Pashley DH. Nanoscopic dynamic mechanical properties of intertubular and peritubular dentin. J Mech Behav Biomed Mater, 2012, 7: 3-6.
|
| [47] |
Ho SP, Pavla S, Grayson WM. Structure, chemical composition and mechanical properties of coronal cementum in human deciduous molars. Dent Mater, 2009, 25(10): 1195-1204.
|
| [48] |
Sunita PH, Yu B, Yun WB. Structure, chemical composition and mechanical properties of human and rat cementum and its interface with root dentin. Acta Biomater, 2009, 5(2): 707-718.
|
| [49] |
Ryou H, Niu LN, Dai L. Effect of biomimetic remineralization on the dynamic nanomechanical properties of dentin hybrid layers. J Dent Res, 2011, 90(9): 1122-1128.
|
| [50] |
Park S, Quinn JB, Romberg E. On the brittleness of enamel and selected dental materials. Dent Mater, 2008, 24(11): 1477-1485.
|
| [51] |
Pupo YM, Michél MD, Gomes OM. Effect of the regional variability of dentinal substrate and modes of application of adhesive systems on the mechanical properties of the adhesive layer. J Conserv Dent, 2012, 15(2): 132-136.
|
| [52] |
Karlinsey RL, Mackey AC, Walker TJ. In vitro remineralization of human and bovine white-spot enamel lesions by NaF dentifrices: a pilot study. J Dent Oral Hyg, 2011, 3(2): 22-29.
|
| [53] |
Ivancik J, Majd H, Bajaj D. Contributions of aging to the fatigue crack growth resistance of human dentin. Acta Biomater, 2012, 8(7): 2737-2746.
|
| [54] |
Nazari A, Bajaj D, Zhang D. Aging and the reduction in fracture toughness of human dentin. J Mech Behav Biomed Mater, 2009, 2(5): 550-559.
|
| [55] |
Zhang D, Mao S, Lu C. Dehydration and the dynamic dimensional changes within dentin and enamel. Dent Mater, 2009, 25(7): 937-945.
|
| [56] |
Bajaj D, Sundaram N, Nazari A. Age, dehydration and fatigue crack growth in dentin. Biomaterials, 2006, 27(11): 2507-2517.
|
| [57] |
Wang RZ, Weiner S. Strain–structure relations in human teeth using Moiré fringes. J Biomech, 1997, 31(2): 135-141.
|
| [58] |
Ziskind D, Hasday M, Cohen SR. Young's modulus of peritubular and intertubular human dentin by nano-indentation tests. J Struct Biol, 2011, 174(1): 23-30.
|
| [59] |
Angker L, Nijhof C, Swain MV. Correlating the mechanical properties to the mineral content of carious dentine—a comparative study using an ultra-micro indentation system (UMIS) and SEM–BSE signals. Arch Oral Biol, 2004, 49(5): 369-378.
|
| [60] |
Kinney JH, Nalla RK, Pople JA. Age-related transparent root dentin: mineral concentration, crystallite size, and mechanical properties. Biomaterials, 2005, 26(16): 3363-3376.
|
| [61] |
Guidoni G, Denkmayr T, Schöberl T. Nanoindentation in teeth: influence of experimental conditions on local mechanical properties. Philos Mag, 2006, 86(33/34/35): 5705-5714.
|
| [62] |
Kinney JH, Gladden J, Marshall GW. Resonant ultrasound spectroscopy measurements of the elastic constants of human dentin. J Biomech, 2004, 37(4): 437-441.
|
| [63] |
Bertassoni LE, Swain MV. Influence of hydration on nanoindentation induced energy expenditure of dentin. J Biomech, 2012, 45(9): 1679-1683.
|
| [64] |
Balooch G, Marshall GW, Marshall SJ. Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth. J Biomech, 2004, 37(8): 1223-1232.
|
| [65] |
Koester KJ, Ager JW 3rd, Ritchie RO The effect of aging on crack-growth resistance and toughening mechanisms in human dentin. Biomaterials, 2008, 29(10): 1318-1328.
|
| [66] |
Arola DD, Reprogel RK. Tubule orientation and the fatigue strength of human dentin. Biomaterials, 2006, 27(9): 2131-2140.
|
| [67] |
Juliana I, Arola DD. The importance of microstructural variations on the fracture toughness of human dentin. Biomaterials, 2013, 34(4): 864-874.
|
| [68] |
Toparli M, Aksoy T. Fracture toughness determination of composite resin and dentin/composite resin adhesive interfaces by laboratory testing and finite element models. Dent Mater, 1998, 14(4): 287-293.
|
| [69] |
Zhang D, Nazari A, Soappman M. Methods for examining the fatigue and fracture behavior of hard tissues. Exp Mech, 2007, 47(3): 325-336.
|
| [70] |
Kruzic JJ, Nalla RK, Kinney JH. Mechanistic aspects of in vitro fatigue-crack growth in dentin. Biomaterials, 2005, 26(10): 1195-1204.
|
| [71] |
Kruzic JJ, Ritchie RO. Fatigue of mineralized tissues: cortical bone and dentin. J Mech Behav Biomed, 2008, 1(1): 3-17.
|
| [72] |
Bajaj D, Nazari A, Eidelman N. A comparison of fatigue crack growth in human enamel and hydroxyapatite. Biomaterails, 2008, 29(36): 4847-4854.
|
| [73] |
Yan J, Taskonak B, Mecholsky JJ Jr. Fractography and fracture toughness of human dentin. J Mech Behav Biomed, 2009, 2(5): 478-484.
|
| [74] |
Padmanabhan SK, Balakrishnan A, Chu MC. Micro-indentation fracture behavior of human enamel. Dent Mater, 2010, 26(1): 100-104.
|
| [75] |
Yan J, Baskonak T, Platt JA. Evaluation of fracture toughness of human dentin using elastic–plastic fracture mechanics. J Biomech, 2008, 41(6): 1253-1259.
|
| [76] |
Kruzic JJ, Nalla RK, Kinney JH. Crack blunting, crack bridging and resistance-curve fracture mechanics in dentin: effect of hydration. Biomaterials, 2003, 24(28): 5209-5221.
|
| [77] |
Chai H, Lee JJ, Lawn BR. Fracture of tooth enamel from incipient microstructural defects. J Mech Behav Biomed, 2010, 3(1): 116-120.
|
| [78] |
Bajaj D, Arola DD. On the R-curve behavior of human tooth enamel. Biomaterials, 2009, 30(23/24): 4037-4046.
|
| [79] |
Bajaj D, Arola D. Role of prism decussation on fatigue crack growth and fracture of human enamel. Acta Biomater, 2009, 5(8): 3045-3056.
|
| [80] |
Nalla RK, Kinney JH, Ritchie RO. Effect of orientation on the in vitro fracture toughness of dentin: the role of toughening mechanisms. Biomaterials, 2003, 24(22): 3955-3968.
|
| [81] |
Wang RZ. Anisotropic fracture in bovine root and coronal dentin. Dent Mater, 2005, 21(5): 429-436.
|
| [82] |
Arola D, Reid J, Cox ME. Transition behavior in fatigue of human dentin: structure and anisotropy. Biomaterials, 2007, 28(26): 3867-3875.
|