Evaluation of three-dimensional biofilms on antibacterial bonding agents containing novel quaternary ammonium methacrylates

Han Zhou , Michael D Weir , Joseph M Antonucci , Gary E Schumacher , Xue-Dong Zhou , Hockin HK Xu

International Journal of Oral Science ›› 2014, Vol. 6 ›› Issue (2) : 77 -86.

PDF
International Journal of Oral Science ›› 2014, Vol. 6 ›› Issue (2) : 77 -86. DOI: 10.1038/ijos.2014.18
Article

Evaluation of three-dimensional biofilms on antibacterial bonding agents containing novel quaternary ammonium methacrylates

Author information +
History +
PDF

Abstract

Dental resins incorporating antibacterial agents could help to destroy the bacterial biofilm responsible for tooth decay, new research shows. By forming a biofilm on surfaces such as teeth, bacterial cells strengthen their chances of survival. To avoid secondary tooth decay following tooth restoration, it is important to minimize the biofilm growth of Streptococcus mutans, bacteria commonly associated with tooth decay. Hockin Xu at the University of Maryland and co-workers across USA and China investigated the effects of new antibacterial dental resins containing various ammonium salts. Their work focused on bacterial survival in different areas of the biofilm. The team found that the most effective resin was that incorporating an ammonium salt with a carbon backbone chain length of 16. This resin killed bacteria throughout the whole thickness of the biofilm.

Keywords

alkyl chain length / antibacterial bonding agent / dental caries / quaternary ammonium methacrylate / Streptococcus mutans / three-dimensional biofilm

Cite this article

Download citation ▾
Han Zhou, Michael D Weir, Joseph M Antonucci, Gary E Schumacher, Xue-Dong Zhou, Hockin HK Xu. Evaluation of three-dimensional biofilms on antibacterial bonding agents containing novel quaternary ammonium methacrylates. International Journal of Oral Science, 2014, 6(2): 77-86 DOI:10.1038/ijos.2014.18

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Drummond JL. Degradation, fatigue, and failure of resin dental composite materials. J Dent Res, 2008, 87(8): 710-719.

[2]

Lynch CD, Frazier KB, McConnell RJ. State-of-the-art techniques in Operative Dentistry: contemporary teaching of posterior composites in UK and Irish dental schools. Br Dent J, 2010, 209(3): 129-136.

[3]

Ferracane JL. Resin composite—state of the art. Dent Mater, 2011, 27(1): 29-38.

[4]

Demarco FF, Correa MB, Cenci MS. Longevity of posterior composite restorations: not only a matter of materials. Dent Mater, 2012, 28(1): 87-101.

[5]

Spencer P, Ye Q, Park JG. Adhesive/dentin interface: the weak link in the composite restoration. Ann Biomed Eng, 2010, 38(6): 1989-2003.

[6]

Ferracane JL, Hilton TJ, Sakaguchi RL. Introduction to and outcomes of the conference on adhesion in dentistry. Dent Mater, 2010, 26(2): 105-107.

[7]

Pashley DH, Tay FR, Breschi L. State of the art etch-and-rinse adhesives. Dent Mater, 2011, 27(1): 1-16.

[8]

Mjor IA, Toffeneti F. Secondary caries: a literature review with caries reports. Quintessence Int, 2000, 31(3): 165-179.

[9]

Sakaguchi RL. Review of the current status and challenges for dental posterior restorative composites: clinical, chemistry, and physical behavior considerations. Dent Mater, 2005, 21(1): 3-6.

[10]

Frost PM. An audit on the placement and replacement of restorations in a general dental practice. Prim Dent Care, 2002, 9(1): 31-36.

[11]

Bagramian RA, Garcia-Godoy F, Volpe AR. The global increase in dental caries. A pending public health crisis. Am J Dent, 2009, 22(1): 3-8.

[12]

ten Cate JM. Biofilms, a new approach to the microbiology of dental plaque. Odontology, 2006, 94(1): 1-9.

[13]

Imazato S. Review: antibacterial properties of resin composites and dentin bonding systems. Dent Mater, 2003, 19(6): 449-457.

[14]

Imazato S. Bioactive restorative materials with antibacterial effects: new dimension of innovation in restorative dentistry. Dent Mater J, 2009, 28(1): 11-19.

[15]

Imazato S, Ehara A, Torii M. Antibacterial activity of dentine primer containing MDPB after curing. J Dent, 1998, 26(3): 267-271.

[16]

Li F, Chen J, Chai Z. Effects of a dental adhesive incorporating antibacterial monomer on the growth, adherence and membrane integrity of Streptococcus mutans. J Dent, 2009, 37(4): 289-296.

[17]

Namba N, Yoshida Y, Nagaoka N. Antibacterial effect of bactericide immobilized in resin matrix. Dent Mater, 2009, 25(4): 424-430.

[18]

Xie D, Weng Y, Guo X. Preparation and evaluation of a novel glass-ionomer cement with antibacterial functions. Dent Mater, 2011, 27(5): 487-496.

[19]

Xu X, Wang Y, Liao S. Synthesis and characterization of antibacterial dental monomers and composites. J Biomed Mater Res B Appl Biomater, 2012, 100(4): 1151-1162.

[20]

Antonucci JM, Zeiger DN, Tang K. Synthesis and characterization of dimethacrylates containing quaternary ammonium functionalities for dental applications. Dent Mater, 2012, 28(2): 219-228.

[21]

Cheng L, Weir MD, Xu HH. Antibacterial amorphous calcium phosphate nanocomposite with quaternary ammonium salt and silver nanoparticles. Dent Mater, 2012, 28(5): 561-572.

[22]

Cheng L, Zhang K, Melo MA. Anti-biofilm dentin primer with quaternary ammonium and silver nanoparticles. J Dent Res, 2012, 91(6): 598-604.

[23]

Zhang K, Melo MA, Cheng L. Effect of quaternary ammonium and silver nanoparticle-containing adhesives on dentin bond strength and dental plaque microcosm biofilms. Dent Mater, 2012, 28(8): 842-852.

[24]

Hiraishi N, Yiu CK, King NM. Effect of chlorhexidine incorporation into a self-etching primer on dentine bond strength of a luting cement. J Dent, 2010, 38(6): 496-502.

[25]

Tezvergil-Mutluay A, Agee KA, Uchiyama T. The inhibitory effects of quaternary ammonium methacrylates on soluble and matrix-bound MMPs. J Dent Res, 2011, 90(4): 535-540.

[26]

Beyth N, Yudovin-Farber I, Bahir R. Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans. Biomaterials, 2006, 27(21): 3995-4002.

[27]

Lin J, Qiu S, Lewis K. Bactericidal properties of flat surfaces and nanoparticles derivatized with alkylated polyethylenimines. Biotechnol Prog, 2002, 18(5): 1082-1086.

[28]

Tiller JC, Liao CJ, Lewis K. Designing surfaces that kill bacteria on contact. Proc Natl Acad Sci U S A, 2001, 98(11): 5981-5985.

[29]

Murata H, Koepsel RR, Matyjaszewski K. Permanent, non-leaching antibacterial surfaces—2: how high density cationic surfaces kill bacterial cells. Biomaterials, 2007, 28(32): 4870-4879.

[30]

Li F, Weir MD, Xu HK. Effects of quaternary ammonium chain length on antibacterial bonding agents. J Dent Res, 2013, 92(10): 932-938.

[31]

Brecx M, Winkler M, Netuschil L. Human dental plaque formation on plastic films. A quantitative SEM study. J West Soc Periodontol Periodontal Abstr, 1994, 42(3): 77-80.

[32]

Hannig M. Transmission electron microscopy of early plaque formation on dental materials in vivo. Eur J Oral Sci, 1999, 107(1): 55-64.

[33]

Wood S, Kirkham J, Marsh P. Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J Dent Res, 2000, 79(1): 21-27.

[34]

Robinson C, Kirkham J, Percival R. A method for the quantitative site-specific study of the biochemistry within dental plaque biofilms formed in vivo. Caries Res, 1997, 31(3): 194-200.

[35]

Singleton S, Treloar R, Warren P. Methods for microscopic characterization of oral biofilms: analysis of colonization, microstructure, and molecular transport phenomena. Adv Dent Res, 1997, 11(1): 133-149.

[36]

Gong SQ, Epasinghe J, Rueggeberg FA. An ORMOSIL-containing orthodontic acrylic resin with concomitant improvements in antimicrobial and fracture toughness properties. PLoS One, 2012, 7(8): e42355.

[37]

Gong SQ, Epasinghe DJ, Bin Zhou B. Effect of water-aging on the antimicrobial activities of an ORMOSIL-containing orthodontic acrylic resin. Acta Biomater, 2013, 9(6): 6964-6973.

[38]

Chávez de Paz LE. Image analysis software based on color segmentation for characterization of viability and physiological activity of biofilms. Appl Environ Microbiol, 2009, 75(6): 1734-1739.

[39]

Auschill T, Artweiler N, Netuschil L. Spatial distribution of vital and dead microorganisms in dental biofilms. Arch Oral Biol, 2001, 46(5): 471-476.

[40]

Netuschil L, Reich E, Unteregger G. A pilot study of confocal laser scanning microscopy for the assessment of undisturbed dental plaque vitality and topography. Arch Oral Biol, 1998, 43(4): 277-285.

[41]

Cheng L, Weir MD, Zhang K. Dental primer and adhesive containing a new antibacterial quaternary ammonium monomer dimethylaminododecyl methacrylate. J Dent, 2013, 41(4): 345-355.

[42]

Chávez de Paz LE, Resin A, Howard KA. Antimicrobial effect of chitosan nanoparticles on streptococcus mutans biofilms. Appl Environ Microbiol, 2011, 77(11): 3892-3895.

[43]

Thebault P, Taffin de Givenchy E, Levy R. Preparation and antimicrobial behaviour of quaternary ammonium thiol derivatives able to be grafted on metal surfaces. Eur J Med Chem, 2009, 44(2): 717-724.

[44]

He J, Söderling E, Österblad M. Synthesis of methacrylate monomers with antibacterial effects against S. mutans. Molecules, 2011, 16(11): 9755-9763.

[45]

Balgavý P, Devínsky F. Cut-off effects in biological activities of surfactants. Adv Colloid Interface Sci, 1996, 66: 23-63.

[46]

Engelberg-Kulka H, Amitai S, Kolodkin-Gal I. Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet, 2006, 2(10): e135.

[47]

Gerdes K, Christensen SK, Løbner-Olesen A. Prokaryotic toxin–antitoxin stress response loci. Nat Rev Microbiol, 2005, 3(5): 371-382.

[48]

Beyth N, Yudovin-Farber I, Bahir R. Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo. Proc Natl Acad Sci U S A, 2010, 107(51): 22038-22043.

[49]

Zhang K, Cheng L, Wu EJ. Effect of water-aging on dentin bond strength and anti-biofilm activity of bonding agent containing antibacterial monomer dimethylaminododecyl methacrylate. J Dent, 2013, 41(6): 504-513.

[50]

Imazato S, Kinomoto Y, Tarumi H. Antibacterial activity and bonding characteristics of an adhesive resin containing antibacterial monomer MDPB. Dent Mater, 2003, 19(4): 313-319.

[51]

Lynch CD, Frazier KB, McConnell RJ. Minimally invasive management of dental caries: contemporary teaching of posterior resin-based composite placement in U.S. and Canadian dental schools. J Am Dent Assoc, 2011, 142(6): 612-620.

[52]

Frencken JE, van’t Hof MA, van Amerongen WE. Effectiveness of single-surface ART restorations in the permanent dentition: a meta-analysis. J Dent Res, 2004, 83(2): 120-123.

[53]

Imazato S, Torii M, Tsuchitani Y. Incorporation of bacterial inhibitor into resin composite. J Dent Res, 1994, 73(8): 1437-1443.

[54]

Cheng L, Weir MD, Zhang K. Antibacterial nanocomposite with calcium phosphate and quaternary ammonium. J Dent Res, 2012, 91(5): 460-466.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/