Dental and periodontal phenotype in sclerostin knockout mice

Ulrike Kuchler , Uwe Y Schwarze , Toni Dobsak , Patrick Heimel , Dieter D Bosshardt , Michaela Kneissel , Reinhard Gruber

International Journal of Oral Science ›› 2014, Vol. 6 ›› Issue (2) : 70 -76.

PDF
International Journal of Oral Science ›› 2014, Vol. 6 ›› Issue (2) : 70 -76. DOI: 10.1038/ijos.2014.12
Article

Dental and periodontal phenotype in sclerostin knockout mice

Author information +
History +
PDF

Abstract

A protein that alters bone and dental support structures does not affect tooth development, which has been reported by researchers in Austria and Switzerland. A team led by Reinhard Gruber, from both the Medical University of Vienna, Austria, and the University of Bern, Switzerland, analysed the lower jaws of mice engineered to lack a functioning copy of a gene called Sost. This gene encodes the protein sclerostin, which inhibits bone formation. Scientists knew that sclerostin was expressed by bone-resorbing cells called osteocytes and cementocytes, which form the modified bone found around the root of teeth. Gruber and colleagues found abnormalities in the structures surrounding the first molars of the mice lacking sclerostin. However, they found no significant defects in tooth dimensions. The work has implications for periodontal regeneration, implant dentistry and dentin formation.

Keywords

alveolar bone / micro-computed tomography / mouse / periodontium / sclerostin / tooth

Cite this article

Download citation ▾
Ulrike Kuchler, Uwe Y Schwarze, Toni Dobsak, Patrick Heimel, Dieter D Bosshardt, Michaela Kneissel, Reinhard Gruber. Dental and periodontal phenotype in sclerostin knockout mice. International Journal of Oral Science, 2014, 6(2): 70-76 DOI:10.1038/ijos.2014.12

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li X, Zhang Y, Kang H. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem, 2005, 280(20): 19883-19887.

[2]

Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med, 2013, 19(2): 179-192.

[3]

van Bezooijen RL, Roelen BA, Visser A. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med, 2004, 199(6): 805-814.

[4]

Brunkow ME, Gardner JC, van Ness J. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet, 2001, 68(3): 577-589.

[5]

Balemans W, Patel N, Ebeling M. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet, 2002, 39(2): 91-97.

[6]

Gardner JC, van Bezooijen RL, Mervis B. Bone mineral density in sclerosteosis; affected individuals and gene carriers. J Clin Endocrinol Metab, 2005, 90(12): 6392-6395.

[7]

Stephen LX, Hamersma H, Gardner J. Dental and oral manifestations of sclerosteosis. Int Dent J, 2001, 51(4): 287-290.

[8]

van Bezooijen RL, Bronckers AL, Gortzak RA. Sclerostin in mineralized matrices and van Buchem disease. J Dent Res, 2009, 88(6): 569-574.

[9]

Jager A, Gotz W, Lossdorfer S. Localization of SOST/sclerostin in cementocytes in vivo and in mineralizing periodontal ligament cells in vitro. J Periodontal Res, 2010, 45(2): 246-254.

[10]

Lehnen SD, Gotz W, Baxmann M. Immunohistochemical evidence for sclerostin during cementogenesis in mice. Ann Anat, 2012, 194(5): 415-421.

[11]

Li X, Ominsky MS, Niu QT. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res, 2008, 23(6): 860-869.

[12]

Kramer I, Loots GG, Studer A. Parathyroid hormone (PTH)-induced bone gain is blunted in SOST overexpressing and deficient mice. J Bone Miner Res, 2010, 25(2): 178-189.

[13]

Li C, Ominsky MS, Tan HL. Increased callus mass and enhanced strength during fracture healing in mice lacking the sclerostin gene. Bone, 2011, 49(6): 1178-1185.

[14]

Lewiecki EM. New targets for intervention in the treatment of postmenopausal osteoporosis. Nat Rev Rheumatol, 2011, 7(11): 631-638.

[15]

Li X, Ominsky MS, Warmington KS. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res, 2009, 24(4): 578-588.

[16]

Padhi D, Jang G, Stouch B. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res, 2011, 26(1): 19-26.

[17]

McDonald MM, Morse A, Mikulec K. Inhibition of sclerostin by systemic treatment with sclerostin antibody enhances healing of proximal tibial defects in ovariectomized rats. J Orthop Res, 2012, 30(10): 1541-1548.

[18]

Virdi AS, Liu M, Sena K. Sclerostin antibody increases bone volume and enhances implant fixation in a rat model. J Bone Joint Surg Am, 2012, 94(18): 1670-1680.

[19]

Taut AD, Jin Q, Chung JH. Sclerostin antibody stimulates bone regeneration following experimental periodontitis. J Bone Miner Res, 2013, 28(11): 2347-2356.

[20]

Naka T, Yokose S. Spatiotemporal expression of sclerostin in odontoblasts during embryonic mouse tooth morphogenesis. J Endod, 2011, 37(3): 340-345.

[21]

Fjeld K, Kettunen P, Furmanek T. Dynamic expression of Wnt signaling-related Dickkopf1, -2, and -3 mRNAs in the developing mouse tooth. Dev Dyn, 2005, 233(1): 161-166.

[22]

Kim TH, Lee JY, Baek JA. Constitutive stabilization of ss-catenin in the dental mesenchyme leads to excessive dentin and cementum formation. Biochem Biophys Res Commun, 2011, 412(4): 549-555.

[23]

Kim TH, Bae CH, Lee JC. Beta-catenin is required in odontoblasts for tooth root formation. J Dent Res, 2013, 92(3): 215-221.

[24]

Donath K. Die Trenn-Dünnschliff-Technik zur Herstellung histologischer Präparate von nicht schneidbaren Geweben und Materialien. Der Präparator, 1988, 34(5): 197-206.

[25]

Kolpakova E, Olsen BR. Wnt/beta-catenin—a canonical tale of cell-fate choice in the vertebrate skeleton. Dev Cell, 2005, 8(5): 626-627.

[26]

Niziolek PJ, Farmer TL, Cui Y. High-bone-mass-producing mutations in the Wnt signaling pathway result in distinct skeletal phenotypes. Bone, 2011, 49(5): 1010-1019.

[27]

Macias BR, Aspenberg P, Agholme F. Paradoxical Sost gene expression response to mechanical unloading in metaphyseal bone. Bone, 2013, 53(2): 515-519.

[28]

Tu X, Rhee Y, Condon KW. Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone, 2012, 50(1): 209-217.

[29]

Bosshardt DD. Are cementoblasts a subpopulation of osteoblasts or a unique phenotype. J Dent Res, 2005, 84(5): 390-406.

[30]

Foster BL, Popowics TE, Fong HK. Advances in defining regulators of cementum development and periodontal regeneration. Curr Top Dev Biol, 2007, 78: 47-126.

[31]

Kim TH, Bae CH, Jang EH. Col1a1-cre mediated activation of beta-catenin leads to aberrant dento-alveolar complex formation. Anat Cell Biol, 2012, 45(3): 193-202.

[32]

Foster BL, Nagatomo KJ, Nociti FH Jr. Central role of pyrophosphate in acellular cementum formation. PLoS One, 2012, 7(6): e38393.

[33]

Beertsen W, VandenBos T, Everts V. Root development in mice lacking functional tissue non-specific alkaline phosphatase gene: inhibition of acellular cementum formation. J Dent Res, 1999, 78(6): 1221-1229.

[34]

Nociti FH Jr, Berry JE, Foster BL. Cementum: a phosphate-sensitive tissue. J Dent Res, 2002, 81(12): 817-821.

[35]

Rodrigues TL, Nagatomo KJ, Foster BL. Modulation of phosphate/pyrophosphate metabolism to regenerate the periodontium: a novel in vivo approach. J Periodontol, 2011, 82(12): 1757-1766.

[36]

Gluhak-Heinrich J, Guo D, Yang W. New roles and mechanism of action of BMP4 in postnatal tooth cytodifferentiation. Bone, 2010, 46(6): 1533-1545.

[37]

Lu X, Ito Y, Atsawasuwan P. Ameloblastin modulates osteoclastogenesis through the integrin/ERK pathway. Bone, 2013, 54(1): 157-168.

[38]

MacDonald BT, Joiner DM, Oyserman SM. Bone mass is inversely proportional to Dkk1 levels in mice. Bone, 2007, 41(3): 331-339.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/