Role of sortase in Streptococcus mutans under the effect of nicotine

Ming-Yun Li , Rui-Jie Huang , Xue-Dong Zhou , Richard L Gregory

International Journal of Oral Science ›› 2013, Vol. 5 ›› Issue (4) : 206 -211.

PDF
International Journal of Oral Science ›› 2013, Vol. 5 ›› Issue (4) : 206 -211. DOI: 10.1038/ijos.2013.86
Article

Role of sortase in Streptococcus mutans under the effect of nicotine

Author information +
History +
PDF

Abstract

Nicotine increases the bacterium Streptococcus mutans’ cavity-causing ability by interacting with the enzyme sortase A, Richard Gregory of the Indiana University School of Dentistry, USA, and colleagues have shown. Sortase A modifies surface proteins in S. mutans. Scientists knew that nicotine increases cavity formation, but not how. Gregory and colleagues focused on the role played by sortase A because it controls the secretion and anchoring of the bacterium’s virulence proteins. Using S. mutans’ cultures of wild-type or sortase-deficient strains, the researchers investigated the effect of nicotine on biofilm formation ­— difficult-to-remove bacterial aggregates that trigger cavity formation. As they increased nicotine levels in the cultures, the researchers found that the wild-type strains produced significantly more biofilm than the sortase-deficient strains. These results indicate that sortase A plays a key role in nicotine-induced cavity formation.

Keywords

dental caries / metabolism / nicotine / sortase A / Streptococcus mutans

Cite this article

Download citation ▾
Ming-Yun Li, Rui-Jie Huang, Xue-Dong Zhou, Richard L Gregory. Role of sortase in Streptococcus mutans under the effect of nicotine. International Journal of Oral Science, 2013, 5(4): 206-211 DOI:10.1038/ijos.2013.86

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hamada S, Slade HD. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev, 1980, 44(2): 331-384.

[2]

Wellmann KF. Smoking and health. On the report of the advisory committee to the surgeon general of the public health service. Dtsch Med Wochenschr, 1964, 89: 1085-1086.

[3]

Carbajosa Garcia S, Llena Puy C. Relationship between tobacco smoke and dental caries in school children at the valencian country. Rev Esp Salud Publica, 2011, 85(2): 217-225.

[4]

Rooban T, Vidya K, Joshua E. Tooth decay in alcohol and tobacco abusers. J Oral Maxillofac Pathol, 2011, 15(1): 14-21.

[5]

Tomar SL, Winn DM. Chewing tobacco use and dental caries among U.S. men. J Am Dent Assoc, 1999, 130(11): 1601-1610.

[6]

Huang R, Li M, Gregory RL. Effect of nicotine on growth and metabolism of Streptococcus mutans. Eur J Oral Sci, 2012, 120(4): 319-325.

[7]

Gregory RL, Gfell LE. Effect of nicotine on secretory component synthesis by secretory epithelial cells. Clin Diagn Lab Immunol, 1996, 3(5): 578-583.

[8]

Gregory RL, Kindle JC, Hobbs LC. Effect of smokeless tobacco use in humans on mucosal immune factors. Arch Oral Biol, 1991, 36(1): 25-31.

[9]

Gregory RL, Kindle JC, Hobbs LC. Effects of smokeless tobacco on the ability of secretory component to bind to the IgA/J chain complex. Hum Antibodies Hybridomas, 1990, 1(3): 126-131.

[10]

Lee SF, Progulske-Fox A, Bleiweis AS. Molecular cloning and expression of a Streptococcus mutans major surface protein antigen, P1 (I/II), in Escherichia coli. Infect Immun, 1988, 56(8): 2114-2119.

[11]

Milgrom P, Riedy CA, Weinstein P. Dental caries and its relationship to bacterial infection, hypoplasia, diet, and oral hygiene in 6- to 36-month-old children. Community Dent Oral Epidemiol, 2000, 28(4): 295-306.

[12]

Yamashita Y, Bowen WH, Burne RA. Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect Immun, 1993, 61(9): 3811-3817.

[13]

Banas JA, Vickerman MM. Glucan-binding proteins of the oral streptococci. Crit Rev Oral Biol Med, 2003, 14(2): 89-99.

[14]

Jakubovics NS, Kerrigan SW, Nobbs AH. Functions of cell surface-anchored Antigen I/II family and HSA polypeptides in interactions of Streptococcus gordonii with host receptors. Infect Immun, 2005, 73(10): 6629-6638.

[15]

Zonuz AT, Rahmati A, Mortazavi H. Effect of cigarette smoke exposure on the growth of Streptococcus mutans and Streptococcus sanguis: an in vitro study. Nicotine Tobacco Res, 2008, 10(1): 63-67.

[16]

Cossart P, Jonquieres R. Sortase, a universal target for therapeutic agents against Gram-positive bacteria. Proc Natl Acad Sci U S A, 2000, 97(10): 5013-5015.

[17]

Mazmanian SK. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science, 1999, 285(5428): 760-763.

[18]

Ton-That H, Liu G, Mazmanian SK. Purification and characterization of sortase, the transpeptidase that cleaves surface proteins of Staphylococcus aureus at the LPXTG motif. Proc Natl Acad Sci U S A, 1999, 96(22): 12424-12429.

[19]

Pallen MJ, Lam AC, Antonio M. An embarrassment of sortases—a richness of substrates. Trends Microbiol, 2001, 9(3): 97-102.

[20]

Ajdic D. Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A, 2002, 99(22): 14434-14439.

[21]

Lee SF, Boran TL. Roles of sortase in surface expression of the major protein adhesin P1, saliva-induced aggregation and adherence, and cariogenicity of Streptococcus mutans. Infect Immun, 2003, 71(2): 676-681.

[22]

Lindemeyer RG, Baum RH, Hsu SC. In vitro effect of tobacco on the growth of oral cariogenic streptococci. J Am Dent Assoc, 1981, 103(5): 719-722.

[23]

Vaananen MK, Markkanen HA, Tuovinen VJ. Dental caries and mutans streptococci in relation to plasma ascorbic acid. Scand J Dent Res, 1994, 102(2): 103-108.

[24]

Pierce CG, Uppuluri P, Tristan AR. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc, 2008, 3(9): 1494-1500.

[25]

Loo CY, Corliss DA, Ganeshkumar N. Streptococcus gordonii biofilm formation: Identification of genes that code for biofilm phenotypes. J Bacteriol, 2000, 182(5): 1374-1382.

[26]

Hoffmann D, Adams JD. Carcinogenic tobacco-specific N-nitrosamines in snuff and in the saliva of snuff dippers. Cancer Res, 1981, 41(11): 4305-4308.

[27]

Caufield PW, Dasanayake AP, Li Y. Natural history of Streptococcus sanguinis in the oral cavity of infants: evidence for a discrete window of infectivity. Infect Immun, 2000, 68(7): 4018-4023.

[28]

Robson N, Bond AJ, Wolff K. Salivary nicotine and cotinine concentrations in unstimulated and stimulated saliva. Afr J Pharm Pharmacol, 2010, 4(2): 61-65.

[29]

Schneider NG, Jacob PR, Nilsson F. Saliva cotinine levels as a function of collection method. Addiction (Abingdon, England), 1997, 92(3): 347-351.

[30]

Bierne H, Mazmanian SK, Trost M. Inactivation of the srtA gene in listeria monocytogenes inhibits anchoring of surface proteins and affects virulence. Mol Microbiol, 2002, 43(4): 869-881.

[31]

Ramage G, Vande Walle K, Wickes BL. Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother, 2001, 45(9): 2475-2479.

[32]

Roehm NW, Rodgers GH, Hatfield SM. An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Methods, 1991, 142(2): 257-265.

[33]

Lee SF, Progulske-Fox A, Erdos GW. Construction and characterization of isogenic mutants of Streptococcus mutans deficient in major surface protein antigen P1 (I/II). Infect Immun, 1989, 57(11): 3306-3313.

[34]

Okahashi N, Sasakawa C, Yoshikawa M. Cloning of surface protein antigen gene from serotype c Streptococcus mutans. Mol Microbiol, 1989, 3(2): 221-228.

[35]

Koga T, Okahashi N, Takahashi I. Surface hydrophobicity, adherence, and aggregation of cell surface protein antigen mutants of Streptococcus mutans serotype c. Infect Immun, 1990, 58(2): 289-296.

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/