The growth of Staphylococcus aureus and Escherichia coli in low-direct current electric fields

Dunya Zituni , Heidi Schütt-Gerowitt , Marion Kopp , Martin Krönke , Klaus Addicks , Christian Hoffmann , Martin Hellmich , Franz Faber , Wilhelm Niedermeier

International Journal of Oral Science ›› 2014, Vol. 6 ›› Issue (1) : 7 -14.

PDF
International Journal of Oral Science ›› 2014, Vol. 6 ›› Issue (1) : 7 -14. DOI: 10.1038/ijos.2013.64
Article

The growth of Staphylococcus aureus and Escherichia coli in low-direct current electric fields

Author information +
History +
PDF

Abstract

The bacterium Staphylococcus aureus is more sensitive than Escherichia coli to disruption by low-voltage currents, researchers in Germany have found. Dental restorations made of different alloys can generate a direct, or galvanic, current in the mouth that is conducted through saliva. Typically, bacteria are negatively charged, so galvanic currents can alter their growth and behavior. Dunya Zituni and co-workers at Cologne University investigated the effect of low-voltage currents with electrical field strength of 2–27 V⋅m−1 on cultures of the common oral microbe S. aureus and the model organism E. coli. In solid medium, the currents inhibited larger zones of S. aureus than E. coli; and, in liquid culture, they ruptured a larger percentage of S. aureus’s cells. The researchers conclude that dental restorations should consist of one alloy only to avoid altering oral microbial communities.

Keywords

direct current / Escherichia coli / electrogalvanism / gold electrode / Staphylococcus aureus

Cite this article

Download citation ▾
Dunya Zituni, Heidi Schütt-Gerowitt, Marion Kopp, Martin Krönke, Klaus Addicks, Christian Hoffmann, Martin Hellmich, Franz Faber, Wilhelm Niedermeier. The growth of Staphylococcus aureus and Escherichia coli in low-direct current electric fields. International Journal of Oral Science, 2014, 6(1): 7-14 DOI:10.1038/ijos.2013.64

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kucerová H, Dostálová T, Procházková J. Influence of galvanic phenomena on the occurrence of algic symptoms in the mouth. Gen Dent, 2002, 50(1): 62-65.

[2]

Nogi N. Electric current around dental metals as a factor producing allergic metal ions in the oral cavity. Nippon Hifuka Gakkai Zasshi, 1989, 99(12): 1243-1254.

[3]

Toumelin-Chemla F, Lasfargues JJ. Unusual in vivo extensive corrosion of a low-silver amalgam restoration involving galvanic coupling: a case report. Quintessence Int, 2003, 34(4): 287-294.

[4]

Certosimo AJ, O’Connor RP. Oral electricity. Gen Dent, 1996, 44(4): 324-326.

[5]

Momoi Y, Asanuma A, Kohno A. A measurement of galvanic current and electrical potential in extracted human teeth. J Dent Res, 1986, 65(12): 1441-1444.

[6]

Nilner K, Glantz PO, Ryge G. Oral galvanic action after treatment with extensive metallic restorations. Acta Odontol Scand, 1982, 40(6): 381-388.

[7]

Ravnholt G, Holland RI. Corrosion current between fresh and old amalgam. Dent Mater, 1988, 4(5): 251-254.

[8]

Nordenström BE. Biologically closed electric circuits (BCEC): clinical, experimental and theoretical evidence for an additional circulatory system, 1983 Stockholm 112-172.

[9]

Schriever W, Diamond LE. Electromotive forces and electric currents caused by metallic dental fillings. J Dent Res, 1952, 31(2): 205-229.

[10]

Wartenberg M, Wirtz N, Grob A. Direct current electrical fields induce apoptosis in oral mucosa cancer cells by NADPH oxidase-derived reactive oxygen species. Bioelectromagnetics, 2008, 29(1): 47-54.

[11]

Söremark R, Ingels O, Plett H. Influence of some dental restorations on the concentrations of inorganic constituents of the saliva. Acta Odontol Scand, 1962, 20: 215-224.

[12]

Snyder DE. Incidence of painful oral electrogalvanism. Gen Dent, 1987, 35(3): 198-199.

[13]

Sun ZL, Wataha JC, Hanks CT. Effects of metal ions on osteoblastlike cell metabolism and differentiation. J Biomed Mater Res, 1997, 34(2): 29-37.

[14]

Wataha JC. Alloys for prosthodontic restorations. J Prosthet Dent, 2002, 87(4): 351-363.

[15]

Takahashi N. Microbial ecosystem in the oral cavity: metabolic diversity in an ecological niche and its relationship with oral diseases. Int Congr Ser, 2005, 1284: 103-112.

[16]

Bagg J, Sweeney M P, Harvey-Wood K. Possible role of Staphylococcus aureus in severe oral mucositis among elderly dehydrated patients. Microbiol Ecol Health Dis, 1995, 8: 51-56.

[17]

Miyake Y, Iwai M, Sugai M. Incidence and characterisation of Staphylococcus aureus from the tongues of children. J Dent Res, 1991, 70(7): 1045-1047.

[18]

Smith AJ, Robertson D, Tang MK. Staphylococcal aureus infection in the oral cavity: a 3-year retrospective analysis of clinical laboratory data. Br Dent J, 2003, 195(12): 701-703.

[19]

Ohara-Nemoto Y, Haraga H, Kimura S. Occurrence of staphylococci in the oral cavities of healthy adults and nasal–oral trafficking of the bacteria. J Med Microbiol, 2008, 57(Pt 1): 95-99.

[20]

Lee PS, Lee KH. Escherichia coli: a model system that benefits from and contributes to the evolution of proteomics. Biotechnol Bioeng, 2003, 84(7): 801-814.

[21]

Pareilleux A, Sicard N. Lethal effects of electric current on Escherichia coli. Appl Microbiol, 1970, 19(3): 421-424.

[22]

Davis CP, Wagle N, Anderson MD. Bacterial and fungal killing by iontophoresis with long-lived electrodes. Antimicrob Agents Chemother, 1991, 35(10): 2131-2134.

[23]

Rosenberg B, van Camp L, Krigas T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature, 1965, 205: 698-699.

[24]

Liu WK, Brown MR, Elliott TS. Mechanisms of the bactericidal activity of low amperage electric current (DC). J Antimicrob Chemother, 1997, 39(6): 687-695.

[25]

Chen C. Periodontitis as a biofilm infection. J Calif Dent Assoc, 2001, 92(5): 362-369.

[26]

Costerton JW, Lewandowski Z, Caldwell DE. Microbial biofilms. Annu Rev Microbiol , 1995, 49: 711-715.

[27]

Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science, 1999, 284(5418): 1318-1322.

[28]

Poortinga AT, Smit J, van der Mei HC. Electric field induced desorption of bacteria from a conditioning film covered substratum. Biotechnol Bioeng, 2001, 76: 395-399.

[29]

Ueshima M, Tanaka S, Nakamura S. Manipulation of bacterial adhesion and proliferation by surface charges of electrically polarized hydroxyapatite. J Biomed Mater Res, 2002, 60(4): 578-584.

[30]

DeFlaun MF, Condee CW. Electrokinetic transport of bacteria. J Hazard Mater, 1997, 55: 263-277.

[31]

Marshall KC, Stout R, Mitchell R. Mechanism of the initial events in the sorption of marine bacteria to surfaces. J Gen Microbiol, 1971, 68: 337-348.

[32]

van der Borden AJ, van der Mei HC, Busscher HJ. Electric block current induced detachment from surgical stainless steel and decreased viability of Staphylococcus epidermidis. Biomaterials, 2005, 26(33): 6731-6735.

[33]

del Pozo JL, Rouse MS, Mandrekar JN. Reduction of Staphylococcus and Pseudomonas biofilms by prolonged exposure to low-intensity electrical current. Antimicrob Agents Chemother, 2009, 53(1): 41-45.

[34]

Spadaro JA, Berger TJ, Barranco SD. Antibacterial effects of silver electrodes with weak direct current. Antimicrob Agents Chemother, 1974, 6(5): 637-642.

[35]

Davis CP, Arnett D, Warren MM. Lontophoretic killing of Escherichia coli in static fluid and in a model catheter system. J Clin Microbiol, 1982, 15(5): 891-894.

[36]

Davis CP, Weinberg S, Anderson MD. Effects of microamperage, medium, and bacterial concentration on iontophoretic killing of bacteria in fluid. Antimicrob Agents Chemother, 1989, 33(4): 442-447.

[37]

Mager WH, de Kruijff AJ. Stress-induced transcriptional activation. Microbiol Rev, 1995, 59(3): 506-531.

[38]

Wójcik-Sikora A, Laubitz D, Pierzynowski S. Exposure of Escherichia coli to intestinal myoelectrical activity-related electric field induces resistance against subsequent UV254nm (UVC) irradiation. Mutat Res, 2001, 496(1/2): 97-104.

[39]

Obermeier A, Matl FD, Friess W. Growth Inhibition of Staphylococcus aureus induced by low-frequency electric and electromagnetic fields. Bioelectromagnetics, 2009, 30(4): 270-279.

[40]

Busalmen JP, de Sánchez SR. Electrochemical polarization-induced changes in the growth of individual cells and biofilms of Pseudomonas fluorescens (ATCC 17552). Appl Environ Microbiol, 2005, 71(10): 6235-6240.

[41]

White D. The Physiology and Biochemistry of Prokaryotes, 1995 New York 534-544.

[42]

Hermansson M. The DLVO theory in microbial adhesion. Colloids Surf B Biointerfaces, 1999, 14: 105-119.

[43]

Busalmen JP, de Sánchez SR. Adhesion of Pseudomonas fluorescens (ATCC 17552) to nonpolarized and polarized thin films of gold. Appl Environ Microbiol, 2001, 67(7): 3188-3194.

[44]

Gadd GM. Heavy metal accumulation by bacteria and other microorganisms. Cell Mol Life Sci, 1990, 46: 834-840.

[45]

Seltzer S, Green DB, Weiner N. A scanning electron microscope examination of silver cones removed from endodontically treated teeth. Oral Surg Oral Med Oral Pathol, 1972, 33(4): 589-605.

[46]

Reith F, Lengke MF, Falconer D. The geomicrobiology of gold. ISME J, 2007, 1(7): 567-584.

[47]

Lengke M, Southam G. Bioaccumulation of gold by sulphate-reducing bacteria cultured in the presence of gold (I)–thiosulfate complex. Geochim Cosmochim Acta, 2006, 70: 3646-3661.

[48]

Barranco SD, Spadaro JA, Berger TJ. In vitro effect of weak direct current on Staphylococcus aureus. . Clin Orthop Relat Res, 1974, (100): 250-255.

[49]

Merriman HL, Hegyi CA, Albright-Overton CR. A comparison of four electrical stimulation types on Staphylococcus aureus growth in vitro. . J Rehabil Res Dev, 2004, 41(2): 139-146.

[50]

Shimada K, Shimahara K. Leakage of cellular contents and morphological changes in resting Escherichia coli B cells exposed to an alternating changes. Agric Biol Chem, 1985, 49: 3605-3607.

[51]

Sanin SL, Sanin FD, Bryers JD. Effect of starvation on the adhesive properties of xenobiotic degrading bacteria. Process Biochem, 2003, 38: 909-914.

AI Summary AI Mindmap
PDF

206

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/