Oral epithelial stem cells in tissue maintenance and disease: the first steps in a long journey

Kyle B Jones , Ophir D Klein

International Journal of Oral Science ›› 2013, Vol. 5 ›› Issue (3) : 121 -129.

PDF
International Journal of Oral Science ›› 2013, Vol. 5 ›› Issue (3) : 121 -129. DOI: 10.1038/ijos.2013.46
Article

Oral epithelial stem cells in tissue maintenance and disease: the first steps in a long journey

Author information +
History +
PDF

Abstract

A better understanding of the adult stem cells found in the oral mucosa should lead to new therapies for mouth disorders, argue two researchers from the University of California, San Francisco, USA. In a review article, Kyle Jones and Ophir Klein discuss the progress made in recent years to identify and characterize oral epithelial stem cells (OESCs) from the tissue that lines the inside of the mouth cavity. Pathological changes in these cells are suspected to underlie various oral diseases. Although scientists have found some molecular markers expressed by OESCs, they have yet to discover genes that are expressed only by these stem cells. This makes tracking the organization and dynamics of OESCs in the body quite difficult, which will eventually be necessary to develop treatments that specifically target OESCs, the authors note.

Keywords

cancer stem cell / invariant asymmetry / neutral drift / oral epithelial stem cell / population asymmetry

Cite this article

Download citation ▾
Kyle B Jones, Ophir D Klein. Oral epithelial stem cells in tissue maintenance and disease: the first steps in a long journey. International Journal of Oral Science, 2013, 5(3): 121-129 DOI:10.1038/ijos.2013.46

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Winning TA, Townsend GC. Oral mucosal embryology and histology. Clin Dermatol, 2000, 18(5): 499-511.

[2]

Rothova M, Thompson H, Lickert H. Lineage tracing of the endoderm during oral development. Dev Dyn, 2012, 241(7): 1183-1191.

[3]

Johnston MC, Bronsky PT. Prenatal craniofacial development: new insights on normal and abnormal mechanisms. Crit Rev Oral Biol Med, 1995, 6(4): 368-422.

[4]

Le Douarin NM. The avian embryo as a model to study the development of the neural crest: a long and still ongoing story. Mech Dev, 2004, 121(9): 1089-1102.

[5]

Kaltschmidt B, Kaltschmidt C, Widera D. Adult craniofacial stem cells: sources and relation to the neural crest. Stem Cell Rev, 2012, 8(3): 658-671.

[6]

Zhang QZ, Nguyen AL, Yu WH. Human oral mucosa and gingiva: a unique reservoir for mesenchymal stem cells. J Dent Res, 2012, 91(11): 1011-1018.

[7]

Squier C. A., Kremer M. J.. Biology of Oral Mucosa and Esophagus. JNCI Monographs, 2001, 2001(29): 7-15.

[8]

Barrett AW, Selvarajah S, Franey S. Interspecies variations in oral epithelial cytokeratin expression. J Anat, 1998, 193(Pt 2): 185-193.

[9]

Wu T, Xiong X, Zhang W. Morphogenesis of rete ridges in human oral mucosa: a pioneering morphological and immunohistochemical study. Cells Tissues Organs, 2013, 197(3): 239-248.

[10]

Dale BA, Salonen J, Jones AH. New approaches and concepts in the study of differentiation of oral epithelia. Crit Rev Oral Biol Med, 1990, 1(3): 167-190.

[11]

Fuchs E. Keratins and the skin. Annu Rev Cell Dev Biol, 1995, 11: 123-153.

[12]

Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respiration, 2013, 85(1): 3-10.

[13]

Joyner AL, Zervas M. Genetic inducible fate mapping in mouse: establishing genetic lineages and defining genetic neuroanatomy in the nervous system. Dev Dyn, 2006, 235(9): 2376-2385.

[14]

Legué E, Joyner AL. Genetic fate mapping using site-specific recombinases. Methods Enzymol, 2010, 477: 153-181.

[15]

van Keymeulen A, Blanpain C. Tracing epithelial stem cells during development, homeostasis, and repair. J Cell Biol, 2012, 197(5): 575-584.

[16]

Cutright DE, Bauer H. Cell renewal in the oral mucosa and skin of the rat. I. Turnover time. Oral Surg Oral Med Oral Pathol, 1967, 23(2): 249-259.

[17]

Potten CS. Epidermal cell production rates. J Invest Dermatol, 1975, 65: 488-500.

[18]

Bickenbach JR. Identification and behavior of label-retaining cells in oral mucosa and skin. J Dent Res, 1981, 60(Spec No C): 1611-1620.

[19]

Bickenbach JR, Mackenzie IC. Identification and localization of label-retaining cells in hamster epithelia. J Invest Dermatol, 1984, 82(6): 618-622.

[20]

Asaka T, Akiyama M, Kitagawa Y. Higher density of label-retaining cells in gingival epithelium. J Dermatol Sci, 2009, 55(2): 132-134.

[21]

Huang YL, Tao X, Xia J. Distribution and quantity of label-retaining cells in rat oral epithelia. J Oral Pathol Med, 2009, 38(8): 663-667.

[22]

Hume WJ, Potten CS. The ordered columnar structure of mouse filiform papillae. J Cell Sci, 1976, 22(1): 149-160.

[23]

Tumbar T, Guasch G, Greco V. Defining the epithelial stem cell niche in skin. Science, 2004, 303(5656): 359-363.

[24]

Mascré G, Dekoninck S, Drogat B. Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature, 2012, 489(7415): 257-262.

[25]

Seidel K, Ahn CP, Lyons D. Hedgehog signaling regulates the generation of ameloblast progenitors in the continuously growing mouse incisor. Development, 2010, 137(22): 3753-3761.

[26]

Snippert HJ, Haegebarth A, Kasper M. Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science, 2010, 327(5971): 1385-1389.

[27]

Doupé DP, Alcolea MP, Roshan A. A Single progenitor population switches behavior to maintain and repair esophageal epithelium. Science, 2012, 337(6098): 1091-1093.

[28]

Barrandon Y, Green H. Cell size as a determinant of the clone-forming ability of human keratinocytes. Proc Natl Acad Sci U S A, 1985, 82(16): 5390-5394.

[29]

Barrandon Y, Green H. Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci U S A, 1987, 84(8): 2302-2306.

[30]

Calenic B, Ishkitiev N, Yaegaki K. Magnetic separation and characterization of keratinocyte stem cells from human gingiva. J Periodontal Res, 2010, 45(6): 703-708.

[31]

Luo X, Okubo T, Randell S. Culture of endodermal stem/progenitor cells of the mouse tongue. In Vitro Cell Dev Biol Anim, 2009, 45(1/2): 44-54.

[32]

Nakamura T, Endo KI, Kinoshita S. Identification of human oral keratinocyte stem/progenitor cells by neurotrophin receptor p75 and the role of neurotrophin/p75 signaling. Stem Cells, 2007, 25(3): 628-638.

[33]

Igarashi T, Shimmura S, Yoshida S. Isolation of oral epithelial progenitors using collagen IV. Oral Dis, 2008, 14(5): 413-418.

[34]

Bryder D, Rossi DJ, Weissman IL. Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol, 2006, 169(2): 338-346.

[35]

Jones PH, Watt FM. Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell, 1993, 73(4): 713-724.

[36]

Kaur P, Li A. Adhesive properties of human basal epidermal cells: an analysis of keratinocyte stem cells, transit amplifying cells, and postmitotic differentiating cells. J Invest Dermatol, 2000, 114(3): 413-420.

[37]

Michel M, Török N, Godbout MJ. Keratin 19 as a biochemical marker of skin stem cells in vivo and in vitro: keratin 19 expressing cells are differentially localized in function of anatomic sites, and their number varies with donor age and culture stage. J Cell Sci, 1996, 109(Pt 5): 1017-1028.

[38]

Lyle S, Christofidou-Solomidou M, Liu Y. The C8/144B monoclonal antibody recognizes cytokeratin 15 and defines the location of human hair follicle stem cells. J Cell Sci, 1998, 111(Pt 21): 3179-3188.

[39]

Pellegrini G, Dellambra E, Golisano O. p63 identifies keratinocyte stem cells. Proc Natl Acad Sci U S A, 2001, 98(6): 3156-3161.

[40]

Legg J, Jensen UB, Broad S. Role of melanoma chondroitin sulphate proteoglycan in patterning stem cells in human interfollicular epidermis. Development, 2003, 130(24): 6049-6063.

[41]

Calenic B, Ishkitiev N, Yaegaki K. Characterization of oral keratinocyte stem cells and prospects of its differentiation to oral epithelial equivalents. Rom J Morphol Embryol, 2010, 51(4): 641-645.

[42]

Mackenzie I. Stem cells in oral mucosal epithelia. Oral Biosci Med, 2005, 2(1): 1-9.

[43]

Sen S, Sharma S, Gupta A. Molecular characterization of explant cultured human oral mucosal epithelial cells. Invest Ophthalmol Vis Sci, 2011, 52(13): 9548-9554.

[44]

Tao Q, Qiao B, Lv B. p63 and its isoforms as markers of rat oral mucosa epidermal stem cells in vitro. . Cell Biochem Funct, 2009, 27(8): 535-541.

[45]

Zhou S, Schuetz JD, Bunting KD. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med, 2001, 7(9): 1028-1034.

[46]

Tian H, Biehs B, Warming S. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature, 2011, 478(7368): 255-259.

[47]

Snippert HJ, van der Flier LG, Sato T. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell, 2010, 143(1): 134-144.

[48]

Jaks V, Barker N, Kasper M. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet, 2008, 40(11): 1291-1299.

[49]

Horsley V, O’Carroll D, Tooze R. Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell, 2006, 126(3): 597-609.

[50]

Jensen KB, Collins CA, Nascimento E. Lrig1 expression defines a distinct multipotent stem cell population in mammalian epidermis. Cell Stem Cell, 2009, 4(5): 427-439.

[51]

Arnold K, Sarkar A, Yram MA. Sox2+ adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell, 2011, 9(4): 317-329.

[52]

Raimondi AR, Molinolo A, Gutkind JS. Rapamycin prevents early onset of tumorigenesis in an oral-specific K-ras and p53 two-hit carcinogenesis model. Cancer Res, 2009, 69(10): 4159-4166.

[53]

Okubo T, Clark C, Hogan BL. Cell lineage mapping of taste bud cells and keratinocytes in the mouse tongue and soft palate. Stem Cells, 2009, 27(2): 442-450.

[54]

Potten CS. The epidermal proliferative unit: the possible role of the central basal cell. Cell Prolif, 1974, 7(1): 77-88.

[55]

Hume WJ, Potten CS. Advances in epithelial kinetics—an oral view. J Oral Pathol Med, 1979, 8(1): 3-22.

[56]

Mackenzie IC. Retroviral transduction of murine epidermal stem cells demonstrates clonal units of epidermal structure. J Invest Dermatol, 1997, 109(3): 377-383.

[57]

Ghazizadeh S, Taichman LB. Multiple classes of stem cells in cutaneous epithelium: a lineage analysis of adult mouse skin. EMBO J, 2001, 20(6): 1215-1222.

[58]

Ro S, Rannala B. A stop-EGFP transgenic mouse to detect clonal cell lineages generated by mutation. EMBO Rep, 2004, 5(9): 914-920.

[59]

Ro S, Rannala B. Evidence from the stop-EGFP mouse supports a niche-sharing model of epidermal proliferative units. Exp Dermatol, 2005, 14(11): 838-843.

[60]

Klein AM, Nakagawa T, Ichikawa R. Mouse germ line stem cells undergo rapid and stochastic turnover. Cell Stem Cell, 2010, 7(2): 214-224.

[61]

Clayton E, Doupé DP, Klein AM. A single type of progenitor cell maintains normal epidermis. Nature, 2007, 446(7132): 185-189.

[62]

Doupé DP, Klein AM, Simons BD. The ordered architecture of murine ear epidermis is maintained by progenitor cells with random fate. Dev Cell, 2010, 18(2): 317-323.

[63]

Klein AM, Simons BD. Universal patterns of stem cell fate in cycling adult tissues. Development, 2011, 138(15): 3103-3111.

[64]

Rosen JM, Jordan CT. The increasing complexity of the cancer stem cell paradigm. Science, 2009, 324(5935): 1670-1673.

[65]

Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer, 2008, 8(10): 755-768.

[66]

Bhaijee F, Pepper DJ, Pitman KT. Cancer stem cells in head and neck squamous cell carcinoma: a review of current knowledge and future applications. Head Neck, 2012, 34(6): 894-899.

[67]

Mannelli G, Gallo O. Cancer stem cells hypothesis and stem cells in head and neck cancers. Cancer Treat Rev, 2012, 38(5): 515-539.

[68]

Prince ME, Sivanandan R, Kaczorowski A. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A, 2007, 104(3): 973-978.

[69]

Clay MR, Tabor M, Owen JH. Single-marker identification of head and neck squamous cell carcinoma cancer stem cells with aldehyde dehydrogenase. Head Neck, 2010, 32(9): 1195-1201.

[70]

Zhang Q, Shi S, Yen Y. A subpopulation of CD133+ cancer stem-like cells characterized in human oral squamous cell carcinoma confer resistance to chemotherapy. Cancer Lett, 2010, 289(2): 151-160.

[71]

Dang D, Ramos DM. Identification of αvβ6-positive stem cells in oral squamous cell carcinoma. Anticancer Res, 2009, 29(6): 2043-2049.

[72]

Chiou SH, Yu CC, Huang CY. Positive correlations of Oct-4 and nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res, 2008, 14(13): 4085-4095.

[73]

Yanamoto S, Kawasaki G, Yamada S. Isolation and characterization of cancer stem-like side population cells in human oral cancer cells. Oral Oncol, 2011, 47(9): 855-860.

[74]

Zhang P, Zhang Y, Mao L. Side population in oral squamous cell carcinoma possesses tumor stem cell phenotypes. Cancer Lett, 2009, 277(2): 227-234.

[75]

Kiyosue T, Collins CA, Nascimento E. Immunohistochemical location of the p75 neurotrophin receptor (p75NTR) in oral leukoplakia and oral squamous cell carcinoma. Int J Clin Oncol, 2013, 18(1): 154-163.

[76]

Köse O, Lalli A, Kutulola AO. Changes in the expression of stem cell markers in oral lichen planus and hyperkeratotic lesions. J Oral Sci, 2007, 49(2): 133-139.

[77]

Takeda T, Sugihara K, Hirayama Y. Immunohistological evaluation of Ki-67, p63, CK19 and p53 expression in oral epithelial dysplasias. J Oral Pathol Med, 2006, 35(6): 369-375.

[78]

Häyry V, Makinen LK, Atula T. Bmi-1 expression predicts prognosis in squamous cell carcinoma of the tongue. Br J Cancer, 2010, 102(5): 892-897.

[79]

Tsai LL, Yu CC, Chang YC. Markedly increased Oct4 and Nanog expression correlates with cisplatin resistance in oral squamous cell carcinoma. J Oral Pathol Med, 2011, 40(8): 621-628.

[80]

Du L, Yang Y, Xiao X. Sox2 nuclear expression is closely associated with poor prognosis in patients with histologically node-negative oral tongue squamous cell carcinoma. Oral Oncol, 2011, 47(8): 709-713.

[81]

Ravindran G, Devaraj H. Aberrant expression of CD133 and musashi-1 in preneoplastic and neoplastic human oral squamous epithelium and their correlation with clinicopathological factors. Head Neck, 2012, 34(8): 1129-1135.

[82]

Watt FM. Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J, 2002, 21(15): 3919-3926.

[83]

Pittenger MF. Multilineage potential of adult human mesenchymal stem cells. Science, 1999, 284(5411): 143-147.

[84]

Tani H, Morris RJ, Kaur P. Enrichment for murine keratinocyte stem cells based on cell surface phenotype. Proc Natl Acad Sci U S A, 2000, 97(20): 10960-10965.

[85]

Okada S, Nakauchi H, Nagayoshi K. Enrichment and characterization of murine hematopoietic stem cells that express c-kit molecule. Blood, 1991, 78(7): 1706-1712.

[86]

Okumura T, Shimada Y, Imamura M. Neurotrophin receptor p75 (NTR) characterizes human esophageal keratinocyte stem cells in vitro. . Oncogene, 2003, 22(26): 4017-4026.

[87]

Vasioukhin V, Degenstein L, Wise B. The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. Proc Natl Acad Sci U S A, 1999, 96(15): 8551-8556.

[88]

Liu Y, Lyle S, Yang Z. Keratin 15 promoter targets putative epithelial stem cells in the hair follicle bulge. J Invest Dermatol, 2003, 121(5): 963-968.

[89]

Zimmerman L, Parr B, Lendahl U. Independent regulatory elements in the nestin gene direct transgene expression to neural stem cells or muscle precursors. Neuron, 1994, 12(1): 11-24.

[90]

Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet, 2000, 24(4): 372-376.

[91]

Chambers I, Colby D, Robertson M. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 2003, 113(5): 643-655.

[92]

Nakagawa M, Koyanagi M, Tanabe K. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol, 2007, 26(1): 101-106.

[93]

Ding XW, Wu JH, Jiang CP. ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci, 2010, 86(17/18): 631-637.

[94]

Sternberg N, Hamilton D. Bacteriophage P1 site-specific recombination. J Mol Biol, 1981, 150(4): 467-486.

[95]

Hoess RH, Ziese M, Sternberg N. P1 site-specific recombination: nucleotide sequence of the recombining sites. Proc Natl Acad Sci U S A, 1982, 79(11): 3398-3402.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/