Bone morphogenetic protein-2 gene controls tooth root development in coordination with formation of the periodontium

Audrey Rakian , Wu-Chen Yang , Jelica Gluhak-Heinrich , Yong Cui , Marie A Harris , Demitri Villarreal , Jerry Q Feng , Mary MacDougall , Stephen E Harris

International Journal of Oral Science ›› 2013, Vol. 5 ›› Issue (2) : 75 -84.

PDF
International Journal of Oral Science ›› 2013, Vol. 5 ›› Issue (2) : 75 -84. DOI: 10.1038/ijos.2013.41
Article

Bone morphogenetic protein-2 gene controls tooth root development in coordination with formation of the periodontium

Author information +
History +
PDF

Abstract

An important protein involved in tooth development also plays a critical role in the formation of the surrounding dental tissues and the tooth-root. To investigate the role of bone morphogenetic protein 2 (BMP2) in the development of structures that support teeth, a team led by Stephen Harris at the University of Texas Health Science Center at San Antonio, USA, deleted the Bmp2 gene in a mouse model. They observed major defects in tooth-root formation, as well as in the establishment of cementum, periodontal ligament and alveolar bone — all part of supporting structures that surround tooth-roots. BMP2 is also involved in the proper development of teeth themselves. As such, the findings shed light on one key developmental pathway shared by cells across the dental tissue spectrum.

Keywords

Bmp2 gene / cementum / dentinogenesis / periodontium development / root formation

Cite this article

Download citation ▾
Audrey Rakian, Wu-Chen Yang, Jelica Gluhak-Heinrich, Yong Cui, Marie A Harris, Demitri Villarreal, Jerry Q Feng, Mary MacDougall, Stephen E Harris. Bone morphogenetic protein-2 gene controls tooth root development in coordination with formation of the periodontium. International Journal of Oral Science, 2013, 5(2): 75-84 DOI:10.1038/ijos.2013.41

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Huang X, Bringas P Jr, Slavkin HC. Fate of HERS during tooth root development. Dev Biol, 2009, 334(1): 22-30.

[2]

Huang XF, Chai Y. Molecular regulatory mechanism of tooth root development. Int J Oral Sci, 2013, 4(4): 177-181.

[3]

Diekwisch TG. The developmental biology of cementum. Int J Dev Biol, 2001, 5(5/6): 695-706.

[4]

Saygin NE, Giannobile WV, Somerman MJ. Molecular and cell biology of cementum. Periodontology 2000, 2000, 24: 73-98.

[5]

Zhao M, Xiao G, Berry JE. Bone morphogenetic protein 2 induces dental follicle cells to differentiate toward a cementoblast/osteoblast phenotype. J Bone Miner Res, 2002, 17(8): 1441-1451.

[6]

Yang W, Harris MA, Cui Y. Bmp2 is required for odontoblast differentiation and pulp vasculogenesis. J Dent Res, 2012, 91(1): 58-64.

[7]

Yang W, Guo D, Harris MA et al. Bmp2 gene controls bone quantity and quality through regulating osteoblast and development and vascular-skeletal stem cell niche. J Cell Sci 2013; in press.

[8]

Rodda SJ, McMahon AP. Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development, 2006, 133(16): 3231-3244.

[9]

Cao Z, Zhang H, Zhou X. Genetic evidence for the vital function of Osterix in cementogenesis. J Bone Miner Res, 2012, 27(5): 1080-1092.

[10]

Foster BL. Methods for studying tooth root cementum by light microscopy. Int J Oral Sci, 2012, 4(3): 119-128.

[11]

Gluhak-Heinrich J, Guo D, Yang W. New roles and mechanism of action of BMP4 in postnatal tooth cytodifferentiation. Bone, 2010, 46(6): 1533-1545.

[12]

Feng J, Yang G, Yuan G. Abnormalities in the enamel in bmp2-deficient mice. Cells Tissues Organs, 2011, 194(2/3/4): 216-221.

[13]

Tang W, Yang F, Li Y. Transcriptional regulation of Vascular Endothelial Growth Factor (VEGF) by osteoblast-specific transcription factor Osterix (Osx) in osteoblasts. J Biol Chem, 2012, 287(3): 1671-1678.

[14]

Huang X, Xu X, Bringas P Jr. Smad4–Shh–Nfic signaling cascade-mediated epithelial–mesenchymal interaction is crucial in regulating tooth root development. J Bone Miner Res, 2010, 25(5): 1167-1178.

[15]

Kim MY, Reyna J, Chen LS. Role of the transcription factor NFIC in odontoblast gene expression. J Calif Dent Assoc, 2009, 37(12): 875-881.

[16]

Lee TY, Lee DS, Kim HM. Disruption of Nfic causes dissociation of odontoblasts by interfering with the formation of intercellular junctions and aberrant odontoblast differentiation. J Histochem Cytochem, 2009, 57(5): 469-476.

[17]

Park JC, Herr Y, Kim HJ. Nfic gene disruption inhibits differentiation of odontoblasts responsible for root formation and results in formation of short and abnormal roots in mice. J Periodontol, 2007, 78(9): 1795-1802.

[18]

Steele-Perkins G, Butz KG, Lyons GE. Essential role for NFI-C/CTF transcription-replication factor in tooth root development. Mol Cell Biol, 2003, 23(3): 1075-1084.

[19]

Feng J, Mantesso A, De BC. Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proc Natl Acad Sci U S A, 2011, 108(16): 6503-6508.

[20]

Covas DT, Panepucci RA, Fontes AM. Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Exp Hematol, 2008, 36(5): 642-654.

[21]

Crisan M, Yap S, Casteilla L. A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell, 2008, 3(3): 301-313.

[22]

Sacchetti B, Funari A, Michienzi S. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell, 2007, 131(2): 324-336.

[23]

Huang GT, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sourcestheir biology and role in regenerative medicine. J Dent Res, 2009, 88(9): 792-806.

[24]

Grcevic D, Pejda S, Matthews BG. In vivo fate mapping identifies mesenchymal progenitor cells. Stem Cells, 2012, 30(2): 187-196.

[25]

San Miguel SM, Fatahi MR, Li H. Defining a visual marker of osteoprogenitor cells within the periodontium. J Periodontal Res, 2010, 45(1): 60-70.

[26]

Huang GT, Sonoyama W, Liu Y. The hidden treasure in apical papilla: the potential role in pulp/dentin regeneration and bioroot engineering. J Endod, 2008, 34(6): 645-651.

[27]

Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res, 2003, 18(4): 696-704.

[28]

Maes C, Kobayashi T, Selig MK. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell, 2010, 19(2): 329-344.

[29]

Schipani E, Maes C, Carmeliet G. Regulation of osteogenesis–angiogenesis coupling by HIFs and VEGF. J Bone Miner Res, 2009, 24(8): 1347-1353.

[30]

Maes C, Goossens S, Bartunkova S. Increased skeletal VEGF enhances beta-catenin activity and results in excessively ossified bones. EMBO J, 2010, 29(2): 424-441.

[31]

Kalajzic Z, Li H, Wang LP. Use of an alpha-smooth muscle actin GFP reporter to identify an osteoprogenitor population. Bone, 2008, 43(3): 501-510.

AI Summary AI Mindmap
PDF

147

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/