Biology of tooth replacement in amniotes

John A Whitlock , Joy M Richman

International Journal of Oral Science ›› 2013, Vol. 5 ›› Issue (2) : 66 -70.

PDF
International Journal of Oral Science ›› 2013, Vol. 5 ›› Issue (2) : 66 -70. DOI: 10.1038/ijos.2013.36
Article

Biology of tooth replacement in amniotes

Author information +
History +
PDF

Abstract

Researchers in Canada have explained the current theories on different tooth replacement patterns in vertebrate species. Like other vertebrates, the teeth we develop early in life are merely a ‘starter set’ that will ultimately be replaced. Mammals typically only undergo one round of replacement, while many fish and reptiles experience lifelong tooth replacement. Yet, the basis for this difference is not fully understood. In their review, John Whitlock and Joy Richman of the University of British Columbia, also present data suggesting that mammals may lose the dental lamina where tooth-forming stem cells reside, or fail to form the ‘successional lamina’ that contributes to later rounds of replacement in reptiles. The authors also explain mechanisms by which patterns of tooth renewal are established within the jaw, and recommend further study in reptile and mouse models.

Keywords

dental lamina / growth factor signalling / mammal / epithelial stem cells diphyodonty / polyphyodonty / reptile / successional lamina / tooth replacement / Zahnreihen, zone of inhibition

Cite this article

Download citation ▾
John A Whitlock, Joy M Richman. Biology of tooth replacement in amniotes. International Journal of Oral Science, 2013, 5(2): 66-70 DOI:10.1038/ijos.2013.36

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jernvall J, Thesleff I. Tooth shape formation and tooth renewal: evolving with the same signals. Development, 2012, 139(19): 3487-3497.

[2]

Handrigan GR, Richman JM. A network of Wnt, hedgehog and BMP signalling pathways regulates tooth replacement in snakes. Dev Biol, 2010, 348(1): 130-141.

[3]

Handrigan GR, Richman JM. Autocrine and paracrine Shh signaling are necessary for tooth morphogenesis, but not tooth replacement in snakes and lizards (Squamata). Dev Biol, 2010, 337(1): 171-186.

[4]

Richman JM, Handrigan GR. Reptilian tooth development. Genesis, 2011, 49(4): 247-260.

[5]

Järvinen E, Tummers M, Thesleff I. The role of the dental lamina in mammalian tooth replacement. J Exp Zool B Mol Dev Evol, 2009, 312(4): 281-291.

[6]

Ooë T. Human Tooth and Dental Arch Development, 1981 Tokyo 217.

[7]

Wang XP, Fan J. Molecular genetics of supernumerary tooth formation. Genesis, 2011, 49(4): 261-277.

[8]

Buchtová M, Stembirek J, Glocova K. Early regression of the dental lamina underlies the development of diphyodont dentitions. J Dent Res, 2012, 91(5): 491-498.

[9]

Štembírek J, Buchtová M, Král T. Early morphogenesis of heterodont dentition in minipigs. Eur J Oral Sci, 2010, 118(6): 547-558.

[10]

Handrigan GR, Leung KJ, Richman JM. Identification of putative dental epithelial stem cells in a lizard with life-long tooth replacement. Development, 2010, 137(21): 3545-3549.

[11]

Buchtová M, Zahradnicek O, Balkova S et al. Odontogenesis in the veiled Chameleon (Chamaeleo calyptratus). Arch Oral Biol 2012; pii: S0003-9969(12)00380-9. doi:10.1016/j.archoralbio.2012.10.019. [Epub ahead of print].

[12]

Buchtová M, Handrigan G, Tucker A. Initiation and patterning of the snake dentition are dependent on Sonic Hedgehog signaling. Dev Biol, 2008, 319(1): 132-145.

[13]

Jussila M, Thesleff I. Signaling networks regulating tooth organogenesis and regeneration, and the specification of dental mesenchymal and epithelial cell lineages. Cold Spring Harb Perspect Biol, 2012, 4(4): a008425.

[14]

Peterkova R, Lesot H, Peterka M. Phylogenetic memory of developing mammalian dentition. J Exp Zool B Mol Dev Evol, 2006, 306(3): 234-250.

[15]

Juuri E, Jussila M, Seidel K. Sox2 marks epithelial competence to generate teeth. Development, 2013, 140(7): 1424-1432.

[16]

Järvinen E, Välimäki K, Pummila M. The taming of the shrew milk teeth. Evol Dev, 2008, 10(4): 477-486.

[17]

Chuong C, Wu P, Plikus M. Engineering stem cells into organs: topobiological transformations demonstrated by beak, feather, and other ectodermal organ morphogenesis. Curr Top Dev Biol, 2006, 72: 237-274.

[18]

Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell, 1990, 61(7): 1329-1337.

[19]

Blanpain C, Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol, 2009, 10(3): 207-217.

[20]

Fuchs E, Horsley V. More than one way to skin…. Genes Dev, 2008, 22(8): 976-985.

[21]

Tumbar T, Guasch G, Greco V. Defining the epithelial stem cell niche in skin. Science, 2004, 303(5656): 359-363.

[22]

Harada H, Kettunen P, Jung HS. Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J Cell Biol, 1999, 147(1): 105-120.

[23]

Harada H, Toyono T, Toyoshima K. FGF10 maintains stem cell population during mouse incisor development. Connect Tissue Res, 2002, 43(2/3): 201-204.

[24]

Klein OD, Lyons DB, Balooch G. An FGF signaling loop sustains the generation of differentiated progeny from stem cells in mouse incisors. Development, 2008, 135(2): 377-385.

[25]

Thesleff I, Wang XP, Suomalainen M. Regulation of epithelial stem cells in tooth regeneration. C R Biol, 2007, 330(6/7): 561-564.

[26]

Wang XP, Suomalainen M, Felszeghy S. An integrated gene regulatory network controls stem cell proliferation in teeth. PLoS Biol, 2007, 5(6): e159.

[27]

Juuri E, Saito K, Ahtiainen L. Sox2+ stem cells contribute to all epithelial lineages of the tooth via Sfrp5+ progenitors. Dev Cell, 2012, 23(2): 317-328.

[28]

Richman JM, Whitlock JA, Abramyan J. Reptilian tooth regeneration // Huang GTJ, Thesleff I. Stem cells in craniofacial development and regeneration., 2013 New York 135-151.

[29]

Berkovitz BK. Tooth replacement patterns in non-mammalian vertebrates // Teaford FT, Smith MM, Ferguson MW. Development, function and evolution of teeth., 2000 Cambridge 186-200.

[30]

Edmund AG. Tooth replacement phenomena in the lower vertebrates. Contrib Life Sci Div R Ont Mus, 1960, 52: 52-190.

[31]

Logan WH, Kronfeld R. Development of the human jaws and surrounding structures from birth to the age of fifteen years. J Am Dent Assoc, 1933, 20: 379-427.

[32]

Röse C. [Über die Zahnentwicklung der Krokodile. Morphol Jahrb, 1893, 3(2): 195-228.

[33]

Röse C. Ueber die Zahnentwicklung von Chamaeleon. Anat Anz, 1893, 9: 439-451.

[34]

Harrison HS. The development and succession of teeth in Hatteria punctata. Q J Microsc Sci, 1901, 44: 161-219.

[35]

Woerdeman MW. [Beitrage zur Entwicklungsgeschichte von Zähnen und Gebiss der Reptilien. Beitrage IVUeber die Anlage des Ersatzgebiss. Arch Mikrosk Anat, 1921, 95(1): 265-395.

[36]

Edmund AG. Sequence and rate of tooth replacement in the Crocodilia. Contrib Life Sci Div R Ont Mus Toronto, 1962, 56: 7-42.

[37]

Edmund AG. Dentition // Gans C, Bellaris A, Parsons T. Biology of the Reptilia. Morphology A., 1969 London: Academic Press 117-200.

[38]

Cooper JS, Poole DF, Lawson R. The dentition of agamid lizards with special reference to tooth replacement. J Zool, 1970, 162: 85-98.

[39]

Hopson JA. Postcanine replacement in the gomphodont cynodont Diademodon // Kermack DM, Kermack KA. Early Mammals., 1971 London: Academic Press 1-21.

[40]

Ziegler AC. A theory of the evolution of therian detal formulas and replacement patterns. Q Rev Biol, 1971, 46: 226-249.

[41]

Osborn JW. New approach to Zahnreihen. Nature, 1970, 225(5230): 343-346.

[42]

Osborn JW. The interpretation of patterns in dentition. Biol J Linnean Soc, 1977, 9: 217-229.

[43]

Westergaard B, Ferguson WJ. Development of the dentition in Alligator mississippiensis. Later development in the lower jaws of embryos, hatchlings and young juveniles. J Zool, 1987, 212: 191-222.

[44]

Westergaard B, Ferguson MW. Development of the dentition in Alligator mississippiensis: upper jaw dental and craniofacial development in embryos, hatchlings, and young juveniles, with a comparison to lower jaw development. Am J Anat, 1990, 187(4): 393-421.

[45]

Miller WA, Radnor CJ. Tooth replacement patterns in young Caimen sclerops. . J Morphol, 1970, 130: 501-510.

[46]

Evans SE. Tooth replacement in the lower Jurassic lepidosaur Gephyrosaurus bridensis. . N Jb Geol Paläont– Monat, 1985, 7: 411-420.

[47]

Cooper JS. The dental anatomy of the genus Lacerta, 1963 Bristol

[48]

Osborn JW. The ontogeny of tooth succession in Lacerta vivipara Jacquin (1787). Proc R Soc Lond B Biol Sci, 1971, 179(56): 261-289.

[49]

Osborn JW. The evolution of dentitions. Am Scientist, 1973, 61: 548-559.

[50]

Clauss F, Maniere MC, Obry F. Dento-craniofacial phenotypes and underlying molecular mechanisms in hypohidrotic ectodermal dysplasia (HED): a review. J Dent Res, 2008, 87(12): 1089-1099.

[51]

Patel K, Makarenkova H, Jung HS. The role of long range, local and direct signalling molecules during chick feather bud development involving the BMPs, follistatin and the Eph receptor tyrosine kinase Eph-A4. Mech Dev, 1999, 86(1/2): 51-62.

[52]

Chang CH, Jiang TX, Lin CM. Distinct Wnt members regulate the hierarchical morphogenesis of skin regions (spinal tract) and individual feathers. Mech Dev, 2004, 121(2): 157-171.

[53]

Widelitz RB, Jiang TX, Chen CW. Wnt-7a in feather morphogenesis: involvement of anterior–posterior asymmetry and proximal–distal elongation demonstrated with an in vitro reconstitution model. Development, 1999, 126(12): 2577-2587.

[54]

Drew CF, Lin CM, Jiang TX. The Edar subfamily in feather placode formation. Dev Biol, 2007, 305(1): 232-245.

[55]

Lin C, Jiang T, Baker R. Spots and stripes: pleomorphic patterning of stem cells via p-ERK-dependent cell chemotaxis shown by feather morphogenesis and mathematical simulation. Dev Biol, 2009, 334(2): 369-382.

[56]

Munne PM, Felszeghy S, Jussila M. Splitting placodes: effects of bone morphogenetic protein and activin on the patterning and identity of mouse incisors. Evol Dev, 2010, 12(4): 383-392.

[57]

Munne PM, Tummers M, Järvinen E. Tinkering with the inductive mesenchyme: Sostdc1 uncovers the role of dental mesenchyme in limiting tooth induction. Development, 2009, 136(3): 393-402.

[58]

Fujimori S, Novak H, Weissenbock M. Wnt/beta-catenin signaling in the dental mesenchyme regulates incisor development by regulating Bmp4. Dev Biol, 2010, 348(1): 97-106.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/