The similarity between human embryonic stem cell-derived epithelial cells and ameloblast-lineage cells

Li-Wei Zheng , Logan Linthicum , Pamela K DenBesten , Yan Zhang

International Journal of Oral Science ›› 2013, Vol. 5 ›› Issue (1) : 1 -6.

PDF
International Journal of Oral Science ›› 2013, Vol. 5 ›› Issue (1) : 1 -6. DOI: 10.1038/ijos.2013.14
Article

The similarity between human embryonic stem cell-derived epithelial cells and ameloblast-lineage cells

Author information +
History +
PDF

Abstract

Cells derived from human embryonic stem cells express a similar suite of genes as the precursor cells that eventually deposit tooth enamel. The findings highlight the potential of one day using such stem cells to help regenerate the hard tissue that coats the outside surface of teeth. A team led by Yan Zhang of the University of California, San Francisco, compared the gene expression profiles of embryonic stem cells, coaxed partially down a pathway toward an enamel-producing fate, with true enamel-forming precursor cells taken from human fetal teeth. They showed that both cell types expressed CK76, a gene encoding a fibrous structural protein known as keratin that makes up the bulk of the enamel matrix, in addition to various other genes that affect the deposition of this protective tooth layer.

Keywords

ameloblast / cytokeratin / dental epithelial cells / human embryonic stem cells / odontogenesis

Cite this article

Download citation ▾
Li-Wei Zheng, Logan Linthicum, Pamela K DenBesten, Yan Zhang. The similarity between human embryonic stem cell-derived epithelial cells and ameloblast-lineage cells. International Journal of Oral Science, 2013, 5(1): 1-6 DOI:10.1038/ijos.2013.14

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kollar EJ, Baird GR. The influence of the dental papilla on the development of tooth shape in embryonic mouse tooth germs. J Embryol Exp Morphol, 1969, 21(1): 131-148.

[2]

Mina M, Kollar EJ. The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch Oral Biol, 1987, 32(2): 123-127.

[3]

Duailibi MT, Duailibi SE, Young CS. Bioengineered teeth from cultured rat tooth bud cells. J Dent Res, 2004, 83(7): 523-528.

[4]

Ohazama A, Modino SA, Miletich I. Stem-cell-based tissue engineering of murine teeth. J Dent Res, 2004, 83(7): 518-522.

[5]

Komine A, Suenaga M, Nakao K. Tooth regeneration from newly established cell lines from a molar tooth germ epithelium. Biochem Biophys Res Commun, 2007, 355(3): 758-763.

[6]

Nakao K, Morita R, Saji Y. The development of a bioengineered organ germ method. Nat Methods, 2007, 4(3): 227-230.

[7]

Gronthos S, Mankani M, Brahim J. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A, 2000, 97(25): 13625-13630.

[8]

Batouli S, Miura M, Brahim J. Comparison of stem-cell-mediated osteogenesis and dentinogenesis. J Dent Res, 2003, 82(12): 976-981.

[9]

Okamoto Y, Sonoyama W, Ono M. Simvastatin induces the odontogenic differentiation of human dental pulp stem cells in vitro and in vivo. . J Endod, 2009, 35(3): 367-372.

[10]

Yang X, van der Kraan PM, Bian Z. Mineralized tissue formation by BMP2-transfected pulp stem cells. J Dent Res, 2009, 88(11): 1020-1025.

[11]

Hu B, Nadiri A, Kuchler-Bopp S. Tissue engineering of tooth crown, root, and periodontium. Tissue Eng, 2006, 12(8): 2069-2075.

[12]

Ning F, Guo Y, Tang J. Differentiation of mouse embryonic stem cells into dental epithelial-like cells induced by ameloblasts serum-free conditioned medium. Biochem Biophys Res Commun, 2010, 394(2): 342-347.

[13]

Hu B, Unda F, Bopp-Kuchler S. Bone marrow cells can give rise to ameloblast-like cells. J Dent Res, 2006, 85(5): 416-421.

[14]

Thomson JA, Itskovitz-Eldor J, Shapiro SS. Embryonic stem cell lines derived from human blastocysts. Science, 1998, 282(5391): 1145-1147.

[15]

Metallo CM, Ji L, de Pablo JJ. Retinoic acid and bone morphogenetic protein signaling synergize to efficiently direct epithelial differentiation of human embryonic stem cells. Stem Cells, 2008, 26(2): 372-380.

[16]

Moll R, Divo M, Langbein L. The human keratins: biology and pathology. Histochem Cell Biol, 2008, 129(6): 705-733.

[17]

Klimanskaya I, Hipp J, Rezai KA. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells, 2004, 6(3): 217-245.

[18]

Hedgepeth CM, Conrad LJ, Zhang J. Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev Biol, 1997, 185(1): 82-91.

[19]

Kotewicz ML, D’Alessio JM, Driftmier KM. Cloning and overexpression of Moloney murine leukemia virus reverse transcriptase in Escherichia coli. . Gene, 1985, 35(3): 249-258.

[20]

Coppe C, Zhang Y, Den Besten PK. Characterization of primary dental pulp cells in vitro. . Pediatr Dent, 2009, 31(7): 467-471.

[21]

Yan Q, Zhang Y, Li W. Differentiation of human ameloblast-lineage cells in vitro. . Eur J Oral Sci, 2006, 114(Suppl 1): 154-158.

[22]

Coraux C, Hilmi C, Rouleau M. Reconstituted skin from murine embryonic stem cells. Curr Biol, 2003, 13(10): 849-853.

[23]

Klein PS, Melton DA. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci U S A, 1996, 93(16): 8455-8459.

[24]

Jernvall J, Thesleff I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech Dev, 2000, 92(1): 19-29.

[25]

Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol, 2004, 20: 781-810.

[26]

Sarkar L, Cobourne M, Naylor S. Wnt/Shh interactions regulate ectodermal boundary formation during mammalian tooth development. Proc Natl Acad Sci U S A, 2000, 97(9): 4520-4524.

[27]

Sarkar L, Sharpe PT. Expression of Wnt signalling pathway genes during tooth development. Mech Dev, 1999, 85(1/2): 197-200.

[28]

Thesleff I, Mikkola M. The role of growth factors in tooth development. Int Rev Cytol, 2002, 217: 93-135.

[29]

Thesleff I, Sharpe P. Signalling networks regulating dental development. Mech Dev, 1997, 67(2): 111-123.

[30]

Brault V, Moore R, Kutsch S. Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development, 2001, 128(8): 1253-1264.

[31]

He P, Zhang Y, Kim SO. Ameloblast differentiation in the human developing tooth: effects of extracellular matrices. Matrix Biol, 2010, 29(5): 411-419.

[32]

Satokata I, Maas R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet, 1994, 6(4): 348-356.

[33]

Trumpp A, Depew MJ, Rubenstein JL. Cre-mediated gene inactivation demonstrates that FGF8 is required for cell survival and patterning of the first branchial arch. Genes Dev, 1999, 13(23): 3136-3148.

[34]

Arin MJ, Mueller FB. Keratins and their associated skin disorders. Eur J Dermatol, 2007, 17(2): 123-129.

[35]

Baharvand H, Hajheidari M, Ashtiani SK. Proteomic signature of human embryonic stem cells. Proteomics, 2006, 6(12): 3544-3549.

[36]

Lynch MH, O’Guin WM, Hardy C. Acidic and basic hair/nail (‘hard’) keratins: their colocalization in upper cortical and cuticle cells of the human hair follicle and their relationship to ‘soft’ keratins. J Cell Biol, 1986, 103(6 Pt 2: ): 2593-2606.

[37]

Schweizer J, Langbein L, Rogers MA. Hair follicle-specific keratins and their diseases. Exp Cell Res, 2007, 313(10): 2010-2020.

[38]

van Muijen GN, Ruiter DJ, Franke WW. Cell type heterogeneity of cytokeratin expression in complex epithelia and carcinomas as demonstrated by monoclonal antibodies specific for cytokeratins nos. 4 and 13. Exp Cell Res, 1986, 162(1): 97-113.

[39]

Zeichner-David M, Diekwisch T, Fincham A. Control of ameloblast differentiation. Int J Dev Biol, 1995, 39(1): 69-92.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/