Antimicrobial effect of alexidine and chlorhexidine against Enterococcus faecalis infection

Hyun-Shik Kim , Seok Woo Chang , Seung-Ho Baek , Seung Hyun Han , Yoon Lee , Qiang Zhu , Kee-Yeon Kum

International Journal of Oral Science ›› 2013, Vol. 5 ›› Issue (1) : 26 -31.

PDF
International Journal of Oral Science ›› 2013, Vol. 5 ›› Issue (1) : 26 -31. DOI: 10.1038/ijos.2013.11
Article

Antimicrobial effect of alexidine and chlorhexidine against Enterococcus faecalis infection

Author information +
History +
PDF

Abstract

The new antiseptic alexidine disinfects root canals as effectively as the commonly used chlorhexidine, a study by Kee-Yeon Kum of the Seoul National University School of Dentistry in South Korea and co-workers has shown. The root canal’s complex anatomy is prone to infection following treatment, so is treated with combinations of antiseptics. Chlorhexidine interacts poorly with the ubiquitously used sodium hypochlorite. Kum and co-workers therefore tested the efficacy of alexidine — which interacts well with sodium hypochlorite — against Enterococcus faecalis, a major cause of persistent infections. The researchers soaked blocks of bovine root canal, infected with E. faecalis, in 1% alexidine or 2% chlorhexidine for 5 or 10 minutes. Visualization of intact cells using scanning electron microscopy showed that alexidine and chlorhexidine are equally effective against E. faecalis, and that 5 minutes of soaking is required.

Keywords

alexidine / antibacterial effect / chlorhexidine / Enterococcus faecalis / Luppens apparatus / root canal soaking / scanning electron microscope

Cite this article

Download citation ▾
Hyun-Shik Kim, Seok Woo Chang, Seung-Ho Baek, Seung Hyun Han, Yoon Lee, Qiang Zhu, Kee-Yeon Kum. Antimicrobial effect of alexidine and chlorhexidine against Enterococcus faecalis infection. International Journal of Oral Science, 2013, 5(1): 26-31 DOI:10.1038/ijos.2013.11

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sjögren U, Figdor D, Persson S. Influence of infection at the time of root filling on the outcome of endodontic treatment of teeth with apical periodontitis. Int Endod J, 1997, 30(5): 297-306.

[2]

Rucucci D, Siqueira JF Jr. Biofilms and apical periodontitis: study of prevalence and association with clinical and histopathologic findings. J Endod, 2010, 36(8): 1277-1288.

[3]

Haapasalo M, Endal U, Zandi H. Eradication of endodontic infection by instrumentation and irrigation solution. Endod Topics, 2005, 10(1): 77-102.

[4]

Siren EK, Haapasalo MPP, Ranta K. Microbial findings and clinical treatment procedures in endodontic cases selected for microbiological investigation. Int Endod J, 1997, 30(2): 90-95.

[5]

Sedgley CM, Lennan SL, Appelbe OK. Survival of Enterococcus faecalis in root canals ex vivo. . Int Endod J, 2005, 38(10): 735-742.

[6]

Chivatxaranukul P, Dashper SG, Messer HH. Dentinal tubule invasion and adherence by Enterococcus faecalis. . Int Endod J, 2008, 41(10): 873-882.

[7]

Distel JW, Hatton JF, Gillespie MJ. Biofilm formation in medicated root canals. J Endod, 2002, 28(10): 689-693.

[8]

Giardino L, Ambu E, Savoldi E. Comparative evaluation of antimicrobial efficacy of sodium hypochlorite, MTAD, and Tetraclan against Enterococcus faecalis biofilm. J Endod, 2007, 33(7): 852-855.

[9]

Arias-Moliz MT, Ferrer-Luque CM, Espigares GarciaM. Enterococcus faecalis biofilms eradication by root canal irrigants. J Endod, 2009, 35(5): 711-714.

[10]

Byström A, Sundqvist G. Bacteriologic evaluation of the efficacy of mechanical root canal instrumentation in endodontic therapy. Scand J Dent Res, 1981, 89(4): 321-328.

[11]

Zehnder M. Root canal irrigants. J Endod, 2006, 32(5): 389-398.

[12]

Parsons GJ, Patterson SS, Miller CH. Uptake and release of chlorhexidine by bovine pulp and dentin specimens and their subsequent acquisition of antibacterial properties. Oral Surg Oral Med Oral Pathol Oral Radiol, 1980, 49(5): 455-459.

[13]

Basrani B, Santos JM, Tjaderhane L. Substantive antimicrobial activity in chlorhexidine-treated human root dentin. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2002, 94(2): 240-245.

[14]

Baca P, Junco P, Arias-Moliz MT. Antimicrobial substantivity over time of chlorhexidine and cetrimide. J Endod, 2012, 38(7): 927-930.

[15]

Mohammadi Z, Abbott PV. The properties and applications of chlorhexidine in endodontics. Int Endod J, 2009, 42(4): 288-302.

[16]

Gomez BP, Ferraz CC, Vianna ME. In vitro antimicrobial activity of several concentrations of sodium hypochlorite and chlorhexidine gluconate in the elimination of Enterococcus faecalis. . Int Endod J, 2001, 34(6): 424-428.

[17]

Lee JK, Baik JE, Yun CH. Chlorhexidine gluconate attenuates the ability of lipoteichoic acid from Enterococcus faecalis to stimulate toll-like receptor 2. J Endod, 2009, 35(2): 212-215.

[18]

Zorko M, Jerala R. Alexidine and chlorhexidine bind to lipopolysaccharide and lipoteichoic acid and prevent cell activation by antibiotics. J Antimicrob Chemoth, 2008, 62(4): 730-737.

[19]

Kim HS, Zhu Q, Han SH. Chemical interaction of alexidine and sodium hypochlorite. J Endod, 2012, 38(1): 112-116.

[20]

Luppens SB, Reij MW, van der Heijden RW. Development of a standard test to assess the resistance of Staphylococcus aureus biofilm cells to disinfectants. Appl Environ Microbiol, 2002, 68(9): 4194-4200.

[21]

Yang SE, Cha JH, Kim ES. Effect of smear layer and chlorhexidine treatment on the adhesion of Enterococcus faecalis to bovine dentin. J Endod, 2006, 32(7): 663-667.

[22]

Greenstein G, Berman C, Jaffin R. Chlorhexidine. An adjunct to periodontal therapy. J Periodontol, 1986, 57(6): 370-376.

[23]

Kontakiotis E, Nakou M, Georgopoulou M. In vitro study of the indirect action of calcium hydroxide on the anaerobic flora of the root canal. Int Endod J, 1995, 28(6): 285-289.

[24]

Baker PJ, Coburn RA, Genco RJ. Structural determinants of activity of chlorhexidine and alkyl bisbiguanides against the human oral flora. J Dent Res, 1987, 66(6): 1099-1106.

[25]

Roberts WR, Addy M. Comparison of the bisbiguanide antiseptics alexidine and chlorhexidine: I. Effect on plaque accumulation and salivary bacteria. J Clin Periodontol, 1981, 8(3): 213-219.

[26]

Lee Y, Han SH, Hong SH. Antimicrobial efficacy of a polymeric chlorhexidine release device using in vitro model of Enterococcus faecalis infected dentinal tubule infection. J Endod, 2008, 34(7): 855-858.

[27]

Das JR, Bhakoo M, Jones MV. Changes in the biocide susceptibility of Staphylococcus epidermidis and Escherichia coli cells associated with rapid attachment to plastic surfaces. J Appl Microbiol, 1998, 84(5): 852-858.

[28]

Wright TL, Ellen RP, Lacroix JM. Effects of metronidazole on Porphyromonas gingivalis biofilms. J Periodontal Res, 1997, 32(5): 473-477.

[29]

Adams JL, McLean RJ. Impact of rpoS deletion on Escherichia coli biofilms. Appl Environ Microbiol, 1999, 65(9): 4285-4287.

[30]

Shen Y, Stojicic S, Haapasalo M. Antimicrobial efficacy of chlorhexidine against bacteria in biofilms at different stages of development. J Endod, 2011, 37(5): 657-661.

[31]

Arias-Moliz M, Ferrer-Luque C, Gonzalez-Rodriquez M. Eradiation of Enteroccus faecalis biofilms by cetrimide and chlorhexidine. J Endod, 2010, 36(1): 87-90.

[32]

Lima K, Fava L, Siqueira J. Susceptibilities of Enterococcus faecalis biofilms to some antimicrobial medications. J Endod, 2001, 27(10): 616-619.

[33]

Persoon IF, Hoogenkamp MA, Bury A. Effect of vanadium chloroperoxidase on Enterococcus faecalis biofilms. J Endod, 2012, 38(1): 72-74.

[34]

Portenier I, Waltimo TMT, Haapasalo M. Enterococcus faecalis—the root canal survivor and ‘star’ in post-treatment disease. Endod Topics, 2003, 6(1): 135-169.

[35]

Naenni N, Thoma K, Zehnder M. Soft tissue dissolution capacity of currently used and potential endodontic irrigants. J Endod, 2004, 30(11): 785-787.

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/