Autonomic and cardiovascular effects of pentobarbital anesthesia during trigeminal stimulation in cats

Hiroshi Hanamoto , Hitoshi Niwa , Mitsutaka Sugimura , Yoshinari Morimoto

International Journal of Oral Science ›› 2012, Vol. 4 ›› Issue (1) : 24 -29.

PDF
International Journal of Oral Science ›› 2012, Vol. 4 ›› Issue (1) : 24 -29. DOI: 10.1038/ijos.2012.7
Article

Autonomic and cardiovascular effects of pentobarbital anesthesia during trigeminal stimulation in cats

Author information +
History +
PDF

Abstract

Anesthetized patients can experience potentially serious physiological responses to physical stimuli. For example, animal studies have revealed a ‘trigeminal depressor response’ (TDR), wherein stimulation of facial nerves under anesthesia triggers a marked decrease in blood pressure and heart rate. Since these studies have not considered the impact of depth of anesthesia, Hiroshi Hanamoto and colleagues at Japan’s Osaka University Graduate School of Dentistry examined the importance of this factor. They found that in lightly anesthetized cats, electrical stimulation of the lingual nerve actually led to increased heart rate and blood pressure; only under heavier anesthesia did such stimuli trigger TDR. This suggests that dental patients who faint during procedures could do so in response to pain, or fear of pain, rather than physiological changes induced by TDR, as was previously speculated.

Keywords

autonomic nervous system / blood pressure and heart rate variability / hemodynamics / trigeminal depressor response

Cite this article

Download citation ▾
Hiroshi Hanamoto, Hitoshi Niwa, Mitsutaka Sugimura, Yoshinari Morimoto. Autonomic and cardiovascular effects of pentobarbital anesthesia during trigeminal stimulation in cats. International Journal of Oral Science, 2012, 4(1): 24-29 DOI:10.1038/ijos.2012.7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kumada M, Dampney RA, Reis DJ. The trigeminal depressor response: a cardiovascular reflex originating from the trigeminal system. Brain Res, 1975, 92(3): 485-489.

[2]

Kumada M, Dampney RA, Reis DJ. The trigeminal depressor response: a novel vasodepressor response originating from the trigeminal system. Brain Res, 1977, 119(2): 305-326.

[3]

Kumada M, Dampney RA, Whitnall MH. Hemodynamic similarities between the trigeminal and aortic vasodepressor responses. Am J Physiol, 1978, 234(1): H67-H73.

[4]

Allen GV, Barbrick B, Esser MJ. Trigeminal-parabrachial connections: possible pathway for nociception-induced cardiovascular reflex responses. Brain Res, 1996, 715(1/2): 125-135.

[5]

Allen GV, Pronych SP. Trigeminal autonomic pathways involved in nociception-induced reflex cardiovascular responses. Brain Res, 1997, 754(1/2): 269-278.

[6]

Esser MJ, Pronych SP, Allen GV. Trigeminal-reticular connections: possible pathways for nociception-induced cardiovascular reflex responses in the rat. J Comp Neurol, 1998, 391(4): 526-544.

[7]

de Sousa Buck H, Caous CA, Lindsey CJ. Projections of the paratrigeminal nucleus to the ambiguus, rostroventrolateral and lateral reticular nuclei, and the solitary tract. Auton Neurosci, 2001, 87(2/3): 187-200.

[8]

Koeda S, Yasuda M, Izumi H. Species differences in the reflex effects of lingual afferent nerve stimulation on lip blood flow and arterial pressure. J Comp Physiol B, 2003, 173(8): 629-636.

[9]

Dellow PG, Morgan MJ. Trigeminal nerve inputs and central blood pressure change in the cat. Arch Oral Biol, 1969, 14(3): 295-300.

[10]

Izumi H, Mizuta K, Kuchiiwa S. Simultaneous measurement of parasympathetic reflex vasodilator and arterial blood pressure responses in the cat. Brain Res, 2002, 952(1): 61-70.

[11]

Akselrod S, Gordon D, Ubel FA. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control. Science, 1981, 13(4504): 220-222.

[12]

Montano N, Lombardi F, Gnecchi Ruscone T. Spectral analysis of sympathetic discharge, R-R interval and systolic arterial pressure in decerebrate cats. J Auton Nerv Syst, 1992, 40(1): 21-31.

[13]

Nagai H, Suzuki T, Katsumata N. Effect of non-depolarizing muscle relaxants on autonomic nervous system activity – assessment by heart rate variability analysis. Masui, 1999, 48(12): 294-301.

[14]

Rey S, Del Rio R, Alcayaga J. Chronic intermittent hypoxia enhances cat chemosensory and ventilatory responses to hypoxia. J Physiol, 2004, 560(Pt 2): 577-586.

[15]

Abbott JA. Heart rate and heart rate variability of healthy cats in home and hospital environments. J Feline Med Surg, 2005, 7(3): 195-202.

[16]

Cooke WH, Hoag JB, Crossman AA. Human responses to upright tilt: a window on central autonomic integration. J Physiol, 1999, 517(Pt 2): 617-628.

[17]

Weise F, Laude D, Girard A. Effects of the cold pressor test on short-term fluctuations of finger arterial blood pressure and heart rate in normal subjects. Clin Auton Res, 1993, 3(5): 303-310.

[18]

Pagani M, Furlan R, Pizzinelli P. Spectral analysis of RR and arterial pressure variabilities to assess sympatho-vagal interaction during mental stress in humans. J Hypertens, 1989, 7(6): S14-S15.

[19]

Pagani M, Montano N, Porta A. Relationship between spectral components of cardiovascular variabilities and direct measures of muscle sympathetic nerve activity in humans. Circulation, 1997, 95(6): 1441-1448.

[20]

Hjemdahl P. Physiological aspects on catecholamine sampling. Life Sci, 1987, 41(7): 841-844.

[21]

Hjemdahl P. Plasma catecholamines – analytical challenges and physiological limitations. Baillieres Clin Endocrinol Metab, 1993, 7(2): 307-353.

[22]

Pichot V, Gaspoz JM, Molliex S. Wavelet transform to quantify heart rate variability and to assess its instantaneous changes. J Appl Physiol, 1999, 86(3): 1081-1091.

[23]

Suzuki M, Hori S, Nakamura I. Role of vagal control in vasovagal syncope. Pacing Clin Electrophysiol, 2003, 26(2 Pt 1): 571-578.

[24]

Belova NY, Mihaylov SV, Piryova BG. Wavelet transform: a better approach for the evaluation of instantaneous changes in heart rate variability. Auton Neurosci, 2007, 131(1/2): 107-122.

[25]

Ivanov PC, Rosenblum MG, Peng CK. Scaling behaviour of heartbeat intervals obtained by wavelet-based time-series analysis. Nature, 1996, 383(6598): 323-327.

[26]

Crosfill ML, Winddicombe JG. Physical characteristics of the chest and lungs and the work of breathing in different mammalian species. J Physiol, 1961, 158(1): 1-14.

[27]

Samso E, Farber NE, Kampine JP. The effects of halothane on pressor and depressor responses elicited via the somatosympathetic reflex: a potential antinociceptive action. Anesth Analg, 1994, 79(5): 971-979.

[28]

Matsukawa K, Ninomiya I. Anesthetic effects on tonic and reflex renal sympathetic nerve activity in awake cats. Am J Physiol, 1989, 256(2 Pt 2): R371-R378.

[29]

Matsukawa K, Ninomiya I, Nishiura N. Effects of anesthesia on cardiac and renal sympathetic nerve activities and plasma catecholamines. Am J Physiol, 1993, 265(4 Pt 2): R792-R797.

[30]

Shimokawa A, Kunitake T, Takasaki M. Differential effects of anesthetics on sympathetic nerve activity and arterial baroreceptor reflex in chronically instrumented rats. J Auton Nerv Syst, 1998, 72(1): 46-54.

[31]

Cheng Y, Cohen B, Oréa V. Baroreflex control of renal sympathetic nerve activity and spontaneous rhythms at Mayer wave's frequency in rats. Auton Neurosci, 2004, 111(2): 80-88.

[32]

Baum D, Halter JB, Taborsky GJ Jr. Pentobarbital effects on plasma catecholamines: temperature, heart rate, and blood pressure. Am J Physiol, 1985, 248(1 Pt 1): E95-E100.

[33]

Ohshita N, Nakajo N, Takemura M. Characteristics of the trigeminal depressor response in cats. J Neurosci Res, 2004, 76(6): 891-901.

[34]

Yu YH, Blessing WW. Constriction of the ear pinna vascular bed accompanies the trigeminal depressor response in rabbits. Neurosci Lett, 1998, 255(3): 172-174.

[35]

Yasuda M, Izumi H. Trigeminal nerve-mediated reflex arterial blood pressure decrease and vasodilatation in lower lip of the rabbit. Brain Res, 2003, 987(1): 59-66.

[36]

Terui N, Saeki Y, Kumada M. Barosensory neurons in the ventrolateral medulla in rabbits and their responses to various afferent inputs from peripheral and central sources. Jpn J Physiol, 1986, 36(6): 1141-1164.

[37]

Gortzak RA, Abraham-Inpijn L. Pain-induced hypertensive episode in the dental office. Gen Dent, 1995, 43(3): 274-276.

[38]

Ichinohe T, Agata H, Aida H. Cerebral cortex regional blood flow and tissue oxygen tension during the trigeminal depressor response in rabbits. J Auton Nerv Syst, 1997, 66(1/2): 111-118.

[39]

Edmondson HD, Roscoe B, Vickers MD. Biochemical evidence of anxiety in dental patients. Br Med J, 1972, 4(5831): 7-9.

[40]

Schaller B. Trigeminocardiac reflex. A clinical phenomenon or a new physiological entity?. J Neurol, 2004, 251(6): 658-665.

[41]

Schaller B, Cornelius JF, Prabhakar H. The trigemino-cardiac reflex: an update of the current knowledge. J Neurosurg Anesthesiol, 2009, 21(3): 187-195.

[42]

Meng Q, Yang Y, Zhou M. Trigemino-cardiac reflex: the trigeminal depressor responses during skull base surgery. Clin Neurol Neurosurg, 2008, 110(7): 662-666.

[43]

Schaller B, Sandu N, Filis A. Trigemino-cardiac reflex: the trigeminal depressor responses during skull base surgery. Clin Neurol Neurosurg,, 2009, 111(2): 220.

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/