A post-classical theory of enamel biomineralization… and why we need one

James P Simmer , Amelia S Richardson , Yuan-Yuan Hu , Charles E Smith , Jan Ching-Chun Hu

International Journal of Oral Science ›› 2012, Vol. 4 ›› Issue (3) : 129 -134.

PDF
International Journal of Oral Science ›› 2012, Vol. 4 ›› Issue (3) : 129 -134. DOI: 10.1038/ijos.2012.59
Article

A post-classical theory of enamel biomineralization… and why we need one

Author information +
History +
PDF

Abstract

Genetic research into tooth-enamel formation reveals a mineralization front along which crystals form, US and Canadian scientists report. James P. Simmer and colleagues at the University of Michigan, USA, and McGill University, Canada, reviewed recent genetic studies which suggest that enamel formation, or amelogenesis, is closely linked to the activity of ameloblasts, the cells that initiate tooth growth. Based on laboratory studies, the classical theory of amelogenesis describes crystal growth on an extracellular matrix with mineral deposition governed by proteins. However, enamel appears to behave differently within the body. Studies on rodents suggest that the first mineral present in enamel is amorphous calcium phosphate (ACP), and that the initial enamel ribbons are not crystalline but flexible. A mineralization front, sustained by the ameloblast cell membrane, shapes and orientates the ribbons before they harden into rod-shaped crystals.

Keywords

ameloblastin / amelogenin / enamelin / mineralization front / tooth

Cite this article

Download citation ▾
James P Simmer, Amelia S Richardson, Yuan-Yuan Hu, Charles E Smith, Jan Ching-Chun Hu. A post-classical theory of enamel biomineralization… and why we need one. International Journal of Oral Science, 2012, 4(3): 129-134 DOI:10.1038/ijos.2012.59

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Selvig KA. The crystal structure of hydroxyapatite in dental enamel as seen with the electron microscope. J Ultrastruct Res, 1972, 41(3): 369-375.

[2]

Meckel AH, Griebstein WJ, Neal RJ. Structure of mature human dental enamel as observed by electron microscopy. Arch Oral Biol, 1965, 10(5): 775-783.

[3]

Kerebel B, Daculsi G, Kerebel LM. Ultrastructural studies of enamel crystallites. J Dent Res, 1979, 58(Spec Issue B): 844-851.

[4]

Daculsi G, Menanteau J, Kerebel LM. Length and shape of enamel crystals. Calcif Tissue Int, 1984, 36(5): 550-555.

[5]

Aoba T. Recent observations on enamel crystal formation during mammalian amelogenesis. Anat Rec, 1996, 245(2): 208-218.

[6]

Simmer JP, Fincham AG. Molecular mechanisms of dental enamel formation. Crit Rev Oral Biol Med, 1995, 6(2): 84-108.

[7]

Nanci A. Enamel: composition, formation, and structure. Ten cate’s oral histology development, structure, and function, 2008 St Louis 141-190.

[8]

Delgado S, Casane D, Bonnaud L. Molecular evidence for precambrian origin of amelogenin, the major protein of vertebrate enamel. Mol Biol Evol, 2001, 18(12): 2146-2153.

[9]

Kawasaki K, Weiss KM. Mineralized tissue and vertebrate evolution: the secretory calcium-binding phosphoprotein gene cluster. Proc Natl Acad Sci U S A, 2003, 100(7): 4060-4065.

[10]

Kawasaki K, Suzuki T, Weiss KM. Genetic basis for the evolution of vertebrate mineralized tissue. Proc Natl Acad Sci U S A, 2004, 101(31): 11356-11361.

[11]

Bauer JW, Lanschuetzer C. Type XVII collagen gene mutations in junctional epidermolysis bullosa and prospects for gene therapy. Clin Exp Dermatol, 2003, 28(1): 53-60.

[12]

Pasmooij AM, Pas HH, Jansen GH. Localized and generalized forms of blistering in junctional epidermolysis bullosa due to COL17A1 mutations in the Netherlands. Br J Dermatol, 2007, 156(5): 861-870.

[13]

Asaka T, Akiyama M, Domon T. Type XVII collagen is a key player in tooth enamel formation. Am J Pathol, 2009, 174(1): 91-100.

[14]

Mellerio JE, Pulkkinen L, McMillan JR. Pyloric atresia-junctional epidermolysis bullosa syndrome: mutations in the integrin beta4 gene (ITGB4) in two unrelated patients with mild disease. Br J Dermatol, 1998, 139(5): 862-871.

[15]

Pulkkinen L, Rouan F, Bruckner-Tuderman L. Novel ITGB4 mutations in lethal and nonlethal variants of epidermolysis bullosa with pyloric atresia: missense versus nonsense. Am J Hum Genet, 1998, 63(5): 1376-1387.

[16]

Nakano A, Pulkkinen L, Murrell D. Epidermolysis bullosa with congenital pyloric atresia: novel mutations in the beta 4 integrin gene (ITGB4) and genotype/phenotype correlations. Pediatr Res, 2001, 49(5): 618-626.

[17]

Buchroithner B, Klausegger A, Ebschner U. Analysis of the LAMB3 gene in a junctional epidermolysis bullosa patient reveals exonic splicing and allele-specific nonsense-mediated mRNA decay. Lab Invest, 2004, 84(10): 1279-1288.

[18]

McLean WH, Irvine AD, Hamill KJ. An unusual N-terminal deletion of the laminin alpha3α isoform leads to the chronic granulation tissue disorder laryngo-onycho-cutaneous syndrome. Hum Mol Genet, 2003, 12(18): 2395-2409.

[19]

Pfendner EG, Lucky AW. Junctional epidermolysis bullosa. SourceGeneReviews™., 2008 Seattle

[20]

Ryan MC, Lee K, Miyashita Y. Targeted disruption of the LAMA3 gene in mice reveals abnormalities in survival and late stage differentiation of epithelial cells. J Cell Biol, 1999, 145(6): 1309-1323.

[21]

Hu CC, Fukae M, Uchida T. Cloning and characterization of porcine enamelin mRNAs. J Dent Res, 1997, 76(11): 1720-1729.

[22]

Uchida T, Murakami C, Dohi N. Synthesis, secretion, degradation and fate of ameloblastin during the matrix formation stage of the rat incisor as shown by immunocytochemistry and immunochemistry using region-specific antibodies. J Histochem Cytochem, 1997, 45(10): 1329-1340.

[23]

Nanci A, Zalzal S, Lavoie P. Comparative immunochemical analyses of the developmental expression and distribution of ameloblastin and amelogenin in rat incisors. J Histochem Cytochem, 1998, 46(8): 911-934.

[24]

Hu JC, Yamakoshi Y. Enamelin and autosomal-dominant amelogenesis imperfecta. Crit Rev Oral Biol Med, 2003, 14(6): 387-398.

[25]

Hu JC, Hu Y, Smith CE. Enamel defects and ameloblast-specific expression in Enam knock-out/lacz knock-in mice. J Biol Chem, 2008, 283(16): 10858-10871.

[26]

Fukumoto S, Kiba T, Hall B. Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts. J Cell Biol, 2004, 167(5): 973-983.

[27]

Orsini G, Lavoie P, Smith C. Immunochemical characterization of a chicken egg yolk antibody to secretory forms of rat incisor amelogenin. J Histochem Cytochem, 2001, 49(3): 285-292.

[28]

Nanci A, Hashimoto J, Zalzal S. Transient accumulation of proteins at interrod and rod enamel growth sites. Adv Dent Res, 1996, 10(2): 135-149.

[29]

Gibson CW, Yuan ZA, Hall B. Amelogenin-deficient mice display an amelogenesis imperfecta phenotype. J Biol Chem, 2001, 276(34): 31871-31875.

[30]

Ronnholm E. An electron microscopic study of the amelogenesis in human teeth. I. The fine structure of the ameloblasts. J Ultrastruct Res, 1962, 6: 229-248.

[31]

Diekwisch TG, Berman BJ, Gentner S. Initial enamel crystals are not spatially associated with mineralized dentine. Cell Tissue Res, 1995, 279(1): 149-167.

[32]

Bodier-Houlle P, Steuer P, Meyer JM. High-resolution electron-microscopic study of the relationship between human enamel and dentin crystals at the dentinoenamel junction. Cell Tissue Res, 2000, 301(3): 389-395.

[33]

Fang PA, Lam RS, Beniash E. Relationships between dentin and enamel mineral at the dentino-enamel boundary: electron tomography and high-resolution transmission electron microscopy study. Eur J Oral Sci, 2011, 119(Suppl 1): 120-124.

[34]

Warshawsky H, Josephsen K, Thylstrup A. The development of enamel structure in rat incisors as compared to the teeth of monkey and man. Anat Rec, 1981, 200(4): 371-399.

[35]

Ronnholm E. The amelogenesis of human teeth as revealed by electron microscopy. II. The development of the enamel crystallites. J Ultrastruct Res, 1962, 6: 249-303.

[36]

Ronnholm E III. The structure of the organic stroma of human enamel during amelogenesis. J Ultrastruct Res, 1962, 6: 368-389.

[37]

Smith CE, Nanci A. Protein dynamics of amelogenesis. Anat Rec, 1996, 245(2): 186-207.

[38]

Addadi L, Weiner S. Stereochemical and structural relations between macromolecules and crystals in biomineralization. Biomineralization, chemical and biochemical perspectives, 1989 Weinheim/New York 133-152.

[39]

Hughes J, Rakovan J. The crystal structure of apatite, Ca5(PO4)3(F,OH,Cl). Rev Mineral Geochem, 2002, 1: 1-12.

[40]

Brown W, Lehr J, Smith J. Crystallography of octacalcium phosphate. J Am Chem Soc, 1957, 79(19): 5318-5319.

[41]

Brown WE, Eidelman N, Tomazic B. Octacalcium phosphate as a precursor in biomineral formation. Adv Dent Res, 1987, 1(2): 306-313.

[42]

Dowker S, Anderson P, Elliott J. Crystal chemistry and dissolution of calcium phosphate in dental enamel. Mineral Mag, 1999, 63(6): 791-800.

[43]

Uskokovic V, Khan F, Liu H. Hydrolysis of amelogenin by matrix metalloprotease-20 accelerates mineralization in vitro. . Arch Oral Biol, 2011, 56(12): 1548-1559.

[44]

Sun Z, Fan D, Fan Y. Enamel proteases reduce amelogenin–apatite binding. J Dent Res, 2008, 87(12): 1133-1137.

[45]

Smith CE. Cellular and chemical events during enamel maturation. Crit Rev Oral Biol Med, 1998, 9(2): 128-161.

[46]

Simmer JP, Hu Y, Lertlam R. Hypomaturation enamel defects in Klk4 knockout/LacZ knockin mice. J Biol Chem, 2009, 284(28): 19110-19121.

[47]

Landis WJ, Burke GY, Neuringer JR. Earliest enamel deposits of the rat incisor examined by electron microscopy, electron diffraction, and electron probe microanalysis. Anat Rec, 1988, 220(3): 233-238.

[48]

Beniash E, Metzler RA, Lam RS. Transient amorphous calcium phosphate in forming enamel. J Struct Biol, 2009, 166(2): 133-143.

[49]

Perloff A, Posner AS. Preparation of pure hydroxyapatite crystals. Science, 1956, 124(3222): 583-584.

[50]

Boskey A, Posner AS. Conversion of amorphous calcium phosphate to microcrystalline hydroxyapatite. J Phys Chem, 1973, 77(79): 2313-2317.

[51]

Kwak SY, Wiedemann-Bidlack FB, Beniash E. Role of 20-kDa amelogenin (P148) phosphorylation in calcium phosphate formation in vitro. . J Biol Chem, 2009, 284(28): 18972-18979.

[52]

Becker GL. Calcification mechanisms: roles for cells and mineral. J Oral Pathol, 1977, 6(5): 307-315.

[53]

Inai T, Kukita T, Ohsaki Y. Immunohistochemical demonstration of amelogenin penetration toward the dental pulp in the early stages of ameloblast development in rat molar tooth germs. Anat Rec, 1991, 229: 259-270.

[54]

Begue-Kirn C, Krebsbach PH, Bartlett JD. Dentin sialoprotein, dentin phosphoprotein, enamelysin and ameloblastin: tooth-specific molecules that are distinctively expressed during murine dental differentiation. Eur J Oral Sci, 1998, 106(5): 963-970.

[55]

Hu Y, Hu JC, Smith CE. Kallikrein-related peptidase 4, matrix metalloproteinase 20, and the maturation of murine and porcine enamel. Eur J Oral Sci, 2011, 119(Suppl 1): 217-225.

[56]

Risnes S, Septier D, Deville de Periere D. TEM observations on the ameloblast/enamel interface in the rat incisor. Connect Tissue Res, 2002, 43(2/3): 496-504.

[57]

Kallenbach E. The fine structure of Tomes’ process of rat incisor ameloblasts and its relationship to the elaboration of enamel. Tissue Cell, 1973, 5(3): 501-524.

[58]

Reith EJ, Boyde A. Histochemical and electron probe analysis of secretory ameloblasts of developing rat molar teeth. Histochemistry, 1978, 55: 17-26.

[59]

Reith EJ, Boyde A. The enamel organ, a control gate for calcium influx into the enamel. J Dent Res, 1979, 58(Spec Issue B): 980.

[60]

Prakriya M, Feske S, Gwack Y. Orai1 is an essential pore subunit of the CRAC channel. Nature, 2006, 443(7108): 230-233.

[61]

McCarl CA, Picard C, Khalil S. ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J Allergy Clin Immunol, 2009, 124(6): 1311-1318.e7.

[62]

Munhoz CO, Leblond CP. Deposition of calcium phosphate into dentin and enamel as shown by radioautography of sections of incisor teeth following injection of 45Ca into rats. Calcif Tissue Res, 1974, 15(3): 221-235.

[63]

Snead ML, Zeichner-David M, Chandra T. Construction and identification of mouse amelogenin cDNA clones. Proc Natl Acad Sci U S A, 1983, 80: 7254-7258.

[64]

Krebsbach PH, Lee SK, Matsuki Y. Full-length sequence, localization, and chromosomal mapping of ameloblastin: a novel tooth-specific gene. J Biol Chem, 1996, 271(8): 4431-4435.

[65]

Bartlett JD, Simmer JP, Xue J. Molecular cloning and mRNA tissue distribution of a novel matrix metalloproteinase isolated from porcine enamel organ. Gene, 1996, 183: 123-128.

[66]

Sire JY, Delgado SC, Girondot M. Hen’s teeth with enamel cap: from dream to impossibility. BMC Evol Biol, 2008, 8: 246.

[67]

Meredith RW, Gatesy J, Murphy WJ. Molecular decay of the tooth gene Enamelin (ENAM) mirrors the loss of enamel in the fossil record of placental mammals. PLoS Genet, 2009, 5(9): e1000634.

[68]

Meredith RW, Gatesy J, Cheng J. Pseudogenization of the tooth gene enamelysin (MMP20) in the common ancestor of extant baleen whales. Proc Biol Sci, 2011, 278(1708): 993-1002.

[69]

Ryu OH, Fincham AG, Hu CC. Characterization of recombinant pig enamelysin activity and cleavage of recombinant pig and mouse amelogenins. J Dent Res, 1999, 78(3): 743-750.

[70]

Iwata T, Yamakoshi Y, Hu JC. Processing of ameloblastin by MMP-20. J Dent Res, 2007, 86(2): 153-157.

[71]

Nagano T, Kakegawa A, Yamakoshi Y. Mmp-20 and Klk4 cleavage site preferences for amelogenin sequences. J Dent Res, 2009, 88(9): 823-828.

[72]

Chun YH, Yamakoshi Y, Yamakoshi F. Cleavage site specificity of MMP-20 for secretory-stage ameloblastin. J Dent Res, 2010, 89(8): 785-790.

[73]

Yamakoshi Y, Richardson AS, Nunez SM. Enamel proteins and proteases in Mmp20 and Klk4 null and double-null mice. Eur J Oral Sci, 2011, 119(Suppl 1): 206-216.

[74]

Beniash E, Skobe Z, Bartlett JD. Formation of the dentino-enamel interface in enamelysin (MMP-20)-deficient mouse incisors. Eur J Oral Sci, 2006, 114(Suppl 1): 24-29.

[75]

Simmer JP, Papagerakis P, Smith CE. Regulation of dental enamel shape and hardness. J Dent Res, 2010, 89(10): 1024-1038.

[76]

Smith CE, Warshawsky H. Quantitative analysis of cell turnover in the enamel organ of the rat incisor. Evidence for ameloblast death immediately after enamel matrix secretion. Anat Rec, 1977, 187(1): 63-98.

[77]

Kallenbach E. Fine structure of rat incisor ameloblasts in transition between enamel secretion and maturation stages. Tissue Cell, 1974, 6(1): 173-190.

[78]

Hu JC, Zhang C, Sun X. Characterization of the mouse and human PRSS17 genes, their relationship to other serine proteases, and the expression of PRSS17 in developing mouse incisors. Gene, 2000, 251(1): 1-8.

[79]

Moffatt P, Smith CE, St-Arnaud R. Cloning of rat amelotin and localization of the protein to the basal lamina of maturation stage ameloblasts and junctional epithelium. Biochem J, 2006, 399(1): 37-46.

[80]

Moffatt P, Smith CE, St-Arnaud R. Characterization of Apin, a secreted protein highly expressed in tooth-associated epithelia. J Cell Biochem, 2008, 103(3): 941-956.

[81]

Josephsen K, Fejerskov O. Ameloblast modulation in the maturation zone of the rat incisor enamel organ. A light and electron microscopic study. J Anat, 1977, 124(1): 45-70.

[82]

Smith CE, McKee MD, Nanci A. Cyclic induction and rapid movement of sequential waves of new smooth-ended ameloblast modulation bands in rat incisors as visualized by polychrome fluorescent labeling and GBHA-staining of maturing enamel. Adv Dent Res, 1987, 1(2): 162-175.

[83]

Reith EJ, Boyde A. Autoradiographic evidence of cyclical entry of calcium into maturing enamel of the rat incisor tooth. Arch Oral Biol, 1981, 26(12): 983-987.

[84]

Sasaki S, Takagi T, Suzuki M. Cyclical changes in pH in bovine developing enamel as sequential bands. Arch Oral Biol, 1991, 36(3): 227-231.

[85]

Simmer J, Hu Y, Richardson A. Why does enamel in Klk4 null mice break above the dentino-enamel junction?. Cells Tissues Organs, 2011, 194(2/3/4): 211-215.

[86]

Simmer JP, Richardson AS, Smith CE. Expression of kallikrein-related peptidase 4 in dental and non-dental tissues. Eur J Oral Sci, 2011, 119(Suppl 1): 226-233.

[87]

Hart PS, Hart TC, Michalec MD. Mutation in kallikrein 4 causes autosomal recessive hypomaturation amelogenesis imperfecta. J Med Genet, 2004, 41(7): 545-549.

[88]

Smith CE, Richardson AS, Hu Y. Effect of Kallikrein 4 loss on enamel mineralization: comparison with mice lacking matrix metalloproteinase 20. J Biol Chem, 2011, 286(20): 18149-18160.

[89]

Lacruz RS, Nanci A, Kurtz I. Regulation of pH during amelogenesis. Calcif Tissue Int, 2009, 86(2): 91-103.

[90]

Josephsen K, Takano Y, Frische S. Ion transporters in secretory and cyclically modulating ameloblasts: a new hypothesis for cellular control of preeruptive enamel maturation. Am J Physiol Cell Physiol, 2010, 299(6): C1299-C1307.

[91]

Lacruz RS, Smith CE, Moffatt P. Requirements for ion and solute transport, and pH regulation during enamel maturation. J Cell Physiol, 2012, 227(4): 1776-1785.

AI Summary AI Mindmap
PDF

158

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/