Cementomimetics—constructing a cementum-like biomineralized microlayer via amelogenin-derived peptides

Mustafa Gungormus , Ersin E Oren , Jeremy A Horst , Hanson Fong , Marketa Hnilova , Martha J Somerman , Malcolm L Snead , Ram Samudrala , Candan Tamerler , Mehmet Sarikaya

International Journal of Oral Science ›› 2012, Vol. 4 ›› Issue (2) : 69 -77.

PDF
International Journal of Oral Science ›› 2012, Vol. 4 ›› Issue (2) : 69 -77. DOI: 10.1038/ijos.2012.40
Article

Cementomimetics—constructing a cementum-like biomineralized microlayer via amelogenin-derived peptides

Author information +
History +
PDF

Abstract

New understanding of protein–mineral interactions has led to a method of repairing diseased teeth using peptide coatings, a US study reveals. Mehmet Sarikaya of the University of Washington and co-workers at institutions around the USA have deconstructed the dental enamel protein amelogenin to identify natural peptides that share useful characteristics with crystal-binding peptides (hydrozyapatites). They found that one such peptide — ADP5 — binds with demineralized tooth dentin to form a strong layer. This behavior is very similar to natural cementum, which covers tooth roots and helps hold teeth in place. Cementum is, however, very prone to disease through infections that decrease its ability to mineralize. ADP5 appears to mimic cementum mineralization, and could be used to form a protective layer over diseased teeth, allowing regeneration to begin.

Keywords

amelogenin / amelogenin-derived peptides / bioinformatics / biomineralization / cementomimetics / cementum / demineralization / remineralization

Cite this article

Download citation ▾
Mustafa Gungormus, Ersin E Oren, Jeremy A Horst, Hanson Fong, Marketa Hnilova, Martha J Somerman, Malcolm L Snead, Ram Samudrala, Candan Tamerler, Mehmet Sarikaya. Cementomimetics—constructing a cementum-like biomineralized microlayer via amelogenin-derived peptides. International Journal of Oral Science, 2012, 4(2): 69-77 DOI:10.1038/ijos.2012.40

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lowenstam HA, Weiner S . On biomineralization. New York: Oxford University Press, 1989.

[2]

Mann S . Biomineralization: principles and concepts in bioinorganic materials chemistry. New York: Oxford University, 2001.

[3]

Begue-Kirn C, Krebsbach PH, Bartlett JD. Dentin sialoprotein, dentin phosphoprotein, enamelysin and ameloblastin: tooth-specific molecules that are distinctively expressed during murine dental differentiation. Eur J Oral Sci, 1998, 106(5): 963-970.

[4]

DSouza RN, Cavender A, Sunavala G. Gene expression patterns of murine dentin matrix protein 1 (Dmp1) and dentin sialophosphoprotein (DSPP) suggest distinct developmental functions in vivo. . J Bone Miner Res, 1997, 12(12): 2040-2049.

[5]

Gajjeraman S, Narayanan K, Hao JJ. Matrix macromolecules in hard tissues control the nucleation and hierarchical assembly of hydroxyapatite. J Biol Chem, 2007, 282(2): 1193-1204.

[6]

Cöelfen H, Antonietti M . Mesocrystals and nonclassical crystallization. New York: John Wiley & Sons, 2008.

[7]

Taubman MA, Valverde P, Han XZ. Immune response: the key to bone resorption in periodontal disease. J Periodontol, 2005, 76(11): 2033-2041.

[8]

Goldberg HA, Warner KJ, Li MC. Binding of bone sialoprotein, osteopontin and synthetic polypeptides to hydroxyapatite. Connect Tissue Res, 2001, 42(1): 25-37.

[9]

Gu LS, Kim YK, Liu Y. Immobilization of a phosphonated analog of matrix phosphoproteins within cross-linked collagen as a templating mechanism for biomimetic mineralization. Acta Biomater, 2011, 7(1): 268-277.

[10]

Kim J, Arola DD, Gu LS. Functional biomimetic analogs help remineralize apatite-depleted demineralized resin-infiltrated dentin via a bottom-up approach. Acta Biomater, 2010, 6(7): 2740-2750.

[11]

Capriotti LA, Beebe TP, Schneider JP. Hydroxyapatite surface-induced peptide folding. J Am Chem Soc, 2007, 129(16): 5281-5287.

[12]

Taller A, Grohe B, Rogers KA. Specific adsorption of osteopontin and synthetic polypeptides to calcium oxalate monohydrate crystals. Biophys J, 2007, 93(5): 1768-1777.

[13]

Wazen RM, Tye CE, Goldberg HA. In vivo functional analysis of polyglutamic acid domains in recombinant bone sialoprotein. J Histochem Cytochem, 2007, 55(1): 35-42.

[14]

Zhang SF, Gangal G, Uludag H. ‘Magic bullets’ for bone diseases: progress in rational design of bone-seeking medicinal agents. Chem Soc Rev, 2007, 36(3): 507-531.

[15]

Tye CE, Rattray KR, Warner KJ. Delineation of the hydroxyapatite-nucleating domains of bone sialoprotein. J Biol Chem, 2003, 278(10): 7949-7955.

[16]

Pampena DA, Robertson KA, Litvinova O. Inhibition of hydroxyapatite formation by osteopontin phosphopeptides. Biochem J, 2004, 378(Pt 3): 1083-1087.

[17]

Oren EE, Tamerler C, Sahin D. A novel knowledge-based approach to design inorganic-binding peptides. Bioinformatics, 2007, 23(21): 2816-2822.

[18]

Snead ML, Zhu DH, Lei YP. Protein self-assembly creates a nanoscale device for biomineralization. Mater Sci Eng C, 2006, 26(8): 1296-1300.

[19]

Du C, Falini G, Fermani S. Supramolecular assembly of amelogenin nanospheres into birefringent microribbons. Science, 2005, 307(5714): 1450-1454.

[20]

Bartlett JD, Ganss B, Goldberg M. Protein–protein interactions of the developing enamel matrix. Curr Top Dev Biol, 2006, 74: 57-115.

[21]

Iijima M, Moradian-Oldak J. Interactions of amelogenins with octacalcium phosphate crystal faces are dose dependent. Calcif Tissue Int, 2004, 74(6): 522-531.

[22]

Fan D, Iijima M, Bromley KM. The cooperation of enamelin and amelogenin in controlling octacalcium phosphate crystal morphology. Cells Tissues Organs, 2011, 194(2/3/4): 194-198.

[23]

Gungormus M, Fong H, Kim IW. Regulation of in vitro calcium phosphate mineralization by combinatorially selected hydroxyapatite-binding peptides. Biomacromolecules, 2008, 9(3): 966-973.

[24]

Moradian-Oldak J, Paine ML, Lei YP. Self-assembly properties of recombinant engineered amelogenin proteins analyzed by dynamic light scattering and atomic force microscopy. J Struct Biol, 2000, 131(1): 27-37.

[25]

Pugach MK, Li Y, Suggs C. The amelogenin C-terminus is required for enamel development. J Dent Res, 2010, 89(2): 165-169.

[26]

Friddle RW, Battle K, Trubetskoy V. Single-molecule determination of the face-specific adsorption of amelogenin's C-terminus on hydroxyapatite. Angew Chem Int Ed, 2011, 50(33): 7541-7545.

[27]

Shaw WJ, Campbell AA, Paine ML. The COOH terminus of the amelogenin, LRAP, is oriented next to the hydroxyapatite surface. J Biol Chem, 2004, 279(39): 40263-40266.

[28]

Aoba T, Moreno EC, Kresak M. Possible roles of partial sequences at N- and C-termini of amelogenin in protein–enamel mineral interaction. J Dent Res, 1989, 68(9): 1331-1336.

[29]

Arys A, Jedwab J, Pireaux JJ. Brushite in the pulp of primary molars. J Oral Pathol Med, 1989, 18(7): 371-376.

[30]

Kodaka T, Hirayama A, Mori R. Spherulitic brushite stones in the dental pulp of a cow. J Electron Microsc, 1998, 47(1): 57-65.

[31]

Achilles W, Jockel U, Schaper A. In-vitro formation of urinary stones—generation of spherulites of calcium-phosphate in gel and overgrowth with calcium-oxalate using a new flow model of crystallization. Scann Microsc, 1995, 9(2): 577-586.

[32]

Margolis HC, Beniash E, Fowler CE. Role of macromolecular assembly of enamel matrix proteins in enamel formation. J Dent Res, 2006, 85(9): 775-793.

[33]

Beniash E, Simmer JP, Margolis HC. The effect of recombinant mouse amelogenins on the formation and organization of hydroxyapatite crystals in vitro. . J Struct Biol, 2005, 149(2): 182-190.

[34]

Fan Y, Sun Z, Moradian-Oldak J. Controlled remineralization of enamel in the presence of amelogenin and fluoride. Biomaterials, 2009, 30(4): 478-483.

[35]

Ho SP, Yu B, Yun W. Structure, chemical composition and mechanical properties of human and rat cementum and its interface with root dentin. Acta Biomater, 2009, 5(2): 707-718.

[36]

Moradian-Oldak J, Paine ML, Lei YP. Carboxy- and amino-terminal domains of amelogenin are involved in the supramolecular self-assembly. J Dent Res, 2000, 79: 513-513.

[37]

Paine ML, Luo W, Zhu DH. Functional domains for amelogenin revealed by compound genetic defects. J Bone Miner Res, 2003, 18(3): 466-472.

[38]

Snead ML. Amelogenin protein exhibits a modular design: implications for form and function. Connect Tissue Res, 2003, 44: 47-51.

[39]

Dunglas C, Septier D, Paine ML et al. UItrastructure of forming enamel in mouse bearing a transgene that disrupt amelogenin assembly domains. J Dent Res 2001; 80( 4): 1278–1278.

[40]

Le Norcy E, Kwak SY, Wiedemann-Bidlack FB. Potential role of the amelogenin N-terminus in the regulation of calcium phosphate formation in vitro. . Cells Tissues Organs, 2011, 194(2/3/4): 188-193.

[41]

Qiu SR, Wierzbicki A, Orme CA. Molecular modulation of calcium oxalate crystallization by osteopontin and citrate. Proc Natl Acad Sci U S A, 2004, 101(7): 1811-1815.

[42]

Jiang WG, Chu XB, Wang B. Biomimetically triggered inorganic crystal transformation by biomolecules: a new understanding of biomineralization. J Phys Chem B, 2009, 113(31): 10838-10844.

[43]

Elangovan S, Margolis HC, Oppenheim FG. Conformational changes in salivary proline-rich protein 1 upon adsorption to calcium phosphate crystalsle. Langmuir, 2007, 23(22): 11200-11205.

[44]

Masica DL, Gray JJ. Solution- and adsorbed-state structural ensembles predicted for the statherin-hydroxyapatite system. Biophys J, 2009, 96(8): 3082-3091.

[45]

So CR, Tamerler C, Sarikaya M. Adsorption, diffusion, and self-assembly of an engineered gold-binding peptide on Au(111) investigated by atomic force microscopy. Angew Chem Int Ed, 2009, 48(28): 5174-5177.

[46]

Nagatomo K, Komaki M, Sekiya I. Stem cell properties of human periodontal ligament cells. J Periodontol Res, 2006, 41(4): 303-310.

[47]

Seo BM, Miura M, Gronthos S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet, 2004, 364(9429): 149-155.

[48]

Seo BM, Miura M, Sonoyama W. Recovery of stem cells from cryopreserved periodontal ligament. J Dent Res, 2005, 84(10): 907-912.

[49]

Gay IC, Chen S, MacDougall M. Isolation and characterization of multipotent human periodontal ligament stem cells. Orthod Craniofac Res, 2007, 10(3): 149-160.

[50]

Ivanovski S, Gronthos S, Shi S. Stem cells in the periodontal ligament. Oral Diseases, 2006, 12(4): 358-363.

[51]

Sarikaya M, Aksay IA . Biomimetics: design and processing of materials. Woodburry: NY AIP Press, 1995.

[52]

Laksminarayanan R, Bromley KM, Lei YP. Perturbed amelogenin secondary structure leads to uncontrolled aggregation in amelogenesis imperfecta mutant proteins. J Biol Chem, 2010, 285(52): 40593-40603.

[53]

Delak K, Harcup C, Lakshminarayanan R. The tooth enamel protein, porcine amelogenin, is an intrinsically disordered protein with an extended molecular configuration in the monomeric form. Biochemistry, 2009, 48(10): 2272-2281.

AI Summary AI Mindmap
PDF

110

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/