Nonlinear finite element analysis of three implant–abutment interface designs

Chun-Bo Tang , Si-Yu Liu , Guo-Xing Zhou , Jin-Hua Yu , Guang-Dong Zhang , Yi-Dong Bao , Qiu-Ju Wang

International Journal of Oral Science ›› 2012, Vol. 4 ›› Issue (2) : 101 -108.

PDF
International Journal of Oral Science ›› 2012, Vol. 4 ›› Issue (2) : 101 -108. DOI: 10.1038/ijos.2012.35
Article

Nonlinear finite element analysis of three implant–abutment interface designs

Author information +
History +
PDF

Abstract

Modeling of dental implant systems with nonlinear finite element analysis (FEA) can differentiate their resistance to physical stress. Chun-Bo Tang of Nanjing Medical University, China, along with dental and engineering colleagues in Nanjing, tested the FEA method in a study of three commonly used designs of implant from different countries. In three dimensions, they simulated the stresses of a force of 170 newtons exerted at an angle of 45° onto the top of the attachment point or abutment of each system. From their results, Tang and colleagues concluded that none of the implants was likely to fail under such a force. The way the implants distributed stress, however, suggested that the design from the USA was superior to those from Germany and Sweden, and was likely to be displaced a smaller distance when in use.

Keywords

external hexagonal connection / finite element analysis / implant–abutment interface / internal hexagonal connection / nonlinear analysis

Cite this article

Download citation ▾
Chun-Bo Tang, Si-Yu Liu, Guo-Xing Zhou, Jin-Hua Yu, Guang-Dong Zhang, Yi-Dong Bao, Qiu-Ju Wang. Nonlinear finite element analysis of three implant–abutment interface designs. International Journal of Oral Science, 2012, 4(2): 101-108 DOI:10.1038/ijos.2012.35

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jemt T. Single implants in the anterior maxilla after 15 years of follow-up: comparison with central implants in the edentulous maxilla. Int J Prosthodont, 2008, 21(5): 400-408.

[2]

Moeintaghavi A, Radvar M, Arab H et al. Evaluation of 3- to 8-year treatment outcomes and success rates with six implant brands in partially edentulous patients. J Oral Implantol; e-pub ahead of print 2 December 2010; doi:http://dx.doi.org/10.1563/AAID-JOI-D-10-00117

[3]

Simonis P, Dufour T, Tenenbaum H. Long-term implant survival and success: a 10-16-year follow-up of non-submerged dental implants. Clin Oral Implants Res, 2010, 21(7): 772-777.

[4]

Albrektsson T, Brånemark PI, Hansson HA. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand, 1981, 52(2): 155-170.

[5]

Kitagawa T, Tanimoto Y, Odaki M. Influence of implant/abutment joint designs on abutment screw loosening in a dental implant system. J Biomed Mater Res B Appl Biomater, 2005, 75(2): 457-463.

[6]

Theoharidou A, Petridis HP, Tzannas K. Abutment screw loosening in single-implant restorations: a systematic review. Int J Oral Maxillofac Implants, 2008, 23(4): 681-690.

[7]

Geng JP, Tan KB, Liu GR. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent, 2001, 85(6): 585-598.

[8]

Binon PP. Implants and components: entering the new millennium. Int J Oral Maxillofac Implants, 2000, 15(1): 76-94.

[9]

Balik A, Ozdemir Karatas M, Keskin H . Effects of different abutment connection designs on the force distribution around commercially available dental implants: a 3d finite element analysis. J Oral Implantol; e-pub ahead of print 16 May 2011; doi:http://dx.doi.org/10.1563/AAID-JOI-D-10-00127

[10]

Bernardes SR, de Araujo CA, Neto AJ. Photoelastic analysis of stress patterns from different implant-abutment interfaces. Int J Oral Maxillofac Implants, 2009, 24(5): 781-789.

[11]

Rodriguez-Ciurana X, Vela-Nebot X, Segala-Torres M. Biomechanical repercussions of bone resorption related to biologic width: a finite element analysis of three implant-abutment configurations. Int J Periodontics Restorative Dent, 2009, 29(5): 479-487.

[12]

Wakabayashi N, Ona M, Suzuki T. Nonlinear finite element analyses: advances and challenges in dental applications. J Dent, 2008, 36(7): 463-471.

[13]

Burak Ozcelik T, Ersoy E, Yilmaz B. Biomechanical evaluation of tooth- and implant-supported fixed dental prostheses with various nonrigid connector positions: a finite element analysis. J Prosthodont, 2011, 20(1): 16-28.

[14]

Kong L, Gu Z, Li T. Biomechanical optimization of implant diameter and length for immediate loading: a nonlinear finite element analysis. Int J Prosthodont, 2009, 22(6): 607-615.

[15]

Akca K, Iplikcioglu H. Finite element stress analysis of the influence of staggered versus straight placement of dental implants. Int J Oral Maxillofac Implants, 2001, 16(5): 722-730.

[16]

Pierrisnard L, Hure G, Barquins M. Two dental implants designed for immediate loading: a finite element analysis. Int J Oral Maxillofac Implants, 2002, 17(3): 353-362.

[17]

Alkan I, Sertgoz A, Ekici B. Influence of occlusal forces on stress distribution in preloaded dental implant screws. J Prosthet Dent, 2004, 91(4): 319-325.

[18]

Yu HY, Cai CZ, Zhou ZR. Fretting behavior of cortical bone against titanium and its alloy. Wear, 2005, 259(7/8/9/10/11/12): 910-918.

[19]

Grant JA, Bishop NE, Götzen N. Artificial composite bone as a model of human trabecular bone: the implant-bone interface. J Biomech, 2007, 40(5): 1158-1164.

[20]

Kawaguchi T, Kawata T, Kuriyagawa T. In vivo 3-dimensional measurement of the force exerted on a tooth during clenching. J Biomech, 2007, 40(2): 244-251.

[21]

Albrektsson T, Zarb G, Worthington P. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants, 1986, 1(1): 11-25.

[22]

Berglundh T, Lindhe J. Dimension of the periimplant mucosa. Biological width revisited. J Clin Periodontol, 1996, 23(10): 971-973.

[23]

Tabata LF, Assuncao WG, Adelino Ricardo Barao V. Implant platform switching: biomechanical approach using two-dimensional finite element analysis. J Craniofac Surg, 2010, 21(1): 182-187.

[24]

Chun HJ, Shin HS, Han CH. Influence of implant abutment type on stress distribution in bone under various loading conditions using finite element analysis. Int J Oral Maxillofac Implants, 2006, 21(2): 195-202.

[25]

Maeda Y, Satoh T, Sogo M. In vitro differences of stress concentrations for internal and external hex implant-abutment connections: a short communication. J Oral Rehabil, 2006, 33(1): 75-78.

[26]

Akca K, Cehreli MC, Iplikcioglu H. Evaluation of the mechanical characteristics of the implant-abutment complex of a reduced-diameter morse-taper implant. A nonlinear finite element stress analysis. Clin Oral Implants Res, 2003, 14(4): 444-454.

[27]

Segundo RM, Oshima HM, Silva IN. Stress distribution on external hexagon implant system using 3d finite element analysis. Acta Odontol Latinoam, 2007, 20(2): 79-81.

[28]

Maeda Y, Miura J, Taki I. Biomechanical analysis on platform switching: is there any biomechanical rationale?. Clin Oral Implants Res, 2007, 18(5): 581-584.

[29]

Bilhan H, Kutay O, Arat S. Astra Tech, Brånemark, and ITI implants in the rehabilitation of partial edentulism: two-year results. Implant Dent, 2010, 19(5): 437-446.

[30]

Ostman PO, Wennerberg A, Albrektsson T. Immediate occlusal loading of NanoTite PREVAIL implants: a prospective 1-year clinical and radiographic study. Clin Implant Dent Relat Res, 2010, 12(1): 39-47.

[31]

Chu CM, Huang HL, Hsu JT. Influences of internal tapered abutment designs on bone stresses around a dental implant: three-dimensional finite element method with statistical evaluation. J Periodontol, 2011, 83(1): 111-118.

[32]

Steinebrunner L, Wolfart S, Ludwig K. Implant-abutment interface design affects fatigue and fracture strength of implants. Clin Oral Implants Res, 2008, 19(12): 1276-1284.

[33]

Juodzbalys G, Kubilius R, Eidukynas. Stress distribution in bone: single-unit implant prostheses veneered with porcelain or a new composite material. Implant Dent, 2005, 14(2): 166-175.

[34]

Davarpanah M, Martinez H, Etienne D. A prospective multicenter evaluation of 1,583 3i implants: 1- to 5-year data. Int J Oral Maxillofac Implants, 2002, 17(6): 820-828.

[35]

Bhatavadekar N. Helping the clinician make evidence-based implant selections. A systematic review and qualitative analysis of dental implant studies over a 20 year period. Int Dent J, 2010, 60(5): 359-369.

[36]

Xiao JR, Li YF, Guan SM. The biomechanical analysis of simulating implants in function under osteoporotic jawbone by comparing cylindrical, apical tapered, neck tapered, and expandable type implants: a 3-dimensional finite element analysis. J Oral Maxillofac Surg, 2011, 69(7): 273-281.

[37]

Pessoa RS, Muraru L, Junior EM. Influence of implant connection type on the biomechanical environment of immediately placed implants—CT-based nonlinear, three-dimensional finite element analysis. Clin Implant Dent Relat Res, 2009, 12(3): 219-234.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/