The role of vascular endothelial growth factor in ossification

Yan-Qi Yang , Ying-Ying Tan , Ricky Wong , Alex Wenden , Lin-Kun Zhang , A Bakr M Rabie

International Journal of Oral Science ›› 2012, Vol. 4 ›› Issue (2) : 64 -68.

PDF
International Journal of Oral Science ›› 2012, Vol. 4 ›› Issue (2) : 64 -68. DOI: 10.1038/ijos.2012.33
Article

The role of vascular endothelial growth factor in ossification

Author information +
History +
PDF

Abstract

Vascular endothelial growth factor (VEGF) plays roles in both blood vessel formation (angiogenesis) and bone formation (osteogenesis). Scientists knew that VEGF is a trigger for vascularization. However, a growing body of work suggests that it also modulates the behavior of cells that form and remodel bone. After reviewing the literature, a team led by Yan-Qi Yang of the University of Hong Kong, China, compiled the evidence supporting this dual role for VEGF. Long bones such as limbs are formed by a mechanism called ‘endochondral ossification’, and numerous studies suggest that VEGF regulates this process directly and indirectly through its angiogenic effects. Other bones, like those in the face, form from connective tissue via ‘intramembranous ossification’. VEGF similarly helps to coordinate migration and differentiation of bone cells during this process.

Keywords

endochondral ossification / intramembranous ossification / osteogenesis / vascular endothelial growth factor

Cite this article

Download citation ▾
Yan-Qi Yang, Ying-Ying Tan, Ricky Wong, Alex Wenden, Lin-Kun Zhang, A Bakr M Rabie. The role of vascular endothelial growth factor in ossification. International Journal of Oral Science, 2012, 4(2): 64-68 DOI:10.1038/ijos.2012.33

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Marks SC, Hermey DC. The structure and development of bone. Principles of bone biology, 1996 San Diego 3-24.

[2]

Kanczler JM, Oreffo RO. Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater, 2008, 2(15): 100-114.

[3]

Mandracchia VJ, Nelson SC, Barp EA. Current concepts of bone healing. Clin Podiatr Med Surg, 2001, 18(1): 55-77.

[4]

Rabie AB. Vascular endothelial growth pattern during demineralized bone matrix induced osteogenesis. Connect Tissue Res, 1997, 36(4): 337-345.

[5]

Carmeliet P, Ferreira V, Breier G. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature, 1996, 380(6573): 435-439.

[6]

Ferrara N, Carver-Moore K, Chen H. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature, 1996, 380(6573): 439-443.

[7]

Gerber HP, Hillan KJ, Ryan AM. VEGF is required for growth and survival in neonatal mice. Development, 1999, 126(6): 1149-1159.

[8]

Emad B, Sherif EM, Basma GM. Vascular endothelial growth factor augments the healing of demineralized bone matrix grafts. Int J Surg, 2006, 4(3): 160-166.

[9]

Dai J, Rabie AB. Direct AAV-mediated gene delivery to the temporomandibular joint. Front Biosci, 2007, 12: 2212-2220.

[10]

Dai J, Rabie AB. Recombinant adeno-associated virus vector hybrids efficiently target different skeletal cells. Front Biosci, 2007, 12: 4280-4287.

[11]

Rabie ABM, Dai J, Xu R. Recombinant AAV-mediated VEGF gene therapy induces mandibular condylar growth. Gene Ther, 2007, 14(12): 972-980.

[12]

Li R, Stewart DJ, von Schroeder HP. Effect of cell-based VEGF gene therapy on healing of a segmental bone defect. J Orthop Res, 2009, 27(1): 8-14.

[13]

Ferrara N, Davis Symth T. The biology of vascular endothelial growth factor. Endocr Rev, 1997, 18(1): 4-25.

[14]

Roy H, Bhardwaj S, Ylä-Herttuala S. Biology of vascular endothelial growth factors. FEBS Lett, 2006, 580(12): 2879-2887.

[15]

Thomas KA. Vascular endothelial growth factor, a potent and selective angiogenic agent. J Biol Chem, 1996, 271(2): 603-606.

[16]

Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med, 2003, 9(6): 669-676.

[17]

Pouyssegur J, Dayan F, Mazure NM. Hypoxia signaling in cancer and approaches to enforce tumour regression. Nature, 2006, 441(7092): 437-443.

[18]

Chan D, Suthphin P, Denko N. Role of prolyl hydroxylation in oncogenically stabilized hypoxia-inducible factor-1alpha. J Biol Chem, 2002, 277(42): 40112-40117.

[19]

Fukuda R, Hirota K, Fan F. Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J Biol Chem, 2002, 277(41): 38205-38211.

[20]

Laughner E, Taghavi P, Chiles K. HER2 (neu) signaling increases the rate of hypoxiainducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol, 2001, 21(12): 3995-4004.

[21]

Wang Y, Wan C, Deng L. The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest, 2007, 117(6): 1616-1626.

[22]

Ferrara N. Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev, 2004, 25(4): 581-611.

[23]

Waltenberger J, Claesson-Welsh L, Siegbahn A. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem, 1994, 269(43): 26988-26995.

[24]

Soker S, Takashima S, Miao HQ. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell, 1998, 92(6): 735-745.

[25]

Mayr-Wohlfart U, Waltenberger J, Hausser H. Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone, 2002, 30(3): 472-477.

[26]

Fiedler J, Leucht F, Waltenberger J. VEGF-A and PlGF-1 stimulate chemotactic migration of human mesenchymal progenitor cells. Biochem Biophys Res Commun, 2005, 334(2): 561-568.

[27]

Street J, Bao M, deGuzman L. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci U S A, 2002, 99(15): 9656-9661.

[28]

Deckers MM, Karperien M, van der Bent C. Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation. Endocrinology, 2000, 141(5): 1667-1674.

[29]

Katagiri T, Takahashi N. Regulatory mechanisms of osteoblast and osteoclast differentiation. Oral Dis, 2002, 8(3): 147-159.

[30]

Yasuda H, Shima N, Nakagawa N. A novel molecular mechanism modulating osteoclast differentiation and function. Bone, 1999, 25(1): 109-113.

[31]

Min JK, Kim YM, Kim YM. Vascular endothelial growth factor up-regulates expression of receptor activator of NF-kappa B (RANK) in endothelial cells. Concomitant increase of angiogenic responses to RANK ligand. J Biol Chem, 2003, 278(41): 39548-39557.

[32]

Yao S, Liu D, Pan F. Effect of vascular endothelial growth factor on RANK gene expression in osteoclast precursors and on osteoclastogenesis. Arch Oral Biol, 2006, 51(7): 596-602.

[33]

Nakagawa M, Kaneda T, Arakawa T. Vascular endothelial growth factor (VEGF) directly enhances osteoclastic bone resorption and survival of mature osteoclasts. FEBS Lett, 2000, 473(2): 161-164.

[34]

Rabie AB, Hägg U. Factors regulating mandibular condylar growth. Am J Orthod Dentofacial Orthop, 2002, 122(4): 401-409.

[35]

Rabie AB, Leung FY, Chayanupatkul A. The correlation between neovascularization and bone formation in the condyle during forward mandibular positioning. Angle Orthod, 2002, 72(5): 431-443.

[36]

Rabie AB, Shum L, Chayanupatkul A. VEGF and bone formation in the glenoid fossa during forward mandibular positioning. Am J Orthod Dentofacial Orthop, 2002, 122(2): 202-209.

[37]

Bluteau G, Julien M, Magne D. VEGF and VEGF receptors are differentially expressed in chondrocytes. Bone, 2007, 40(3): 568-576.

[38]

Zelzer E, Mamluk R, Ferrara N. VEGFA is necessary for chondrocyte survival during bone development. Development, 2004, 131(9): 2161-2171.

[39]

Xiong H, Rabie AB, Hagg U. Neovascularization and mandibular condylar bone remodelling in adult rats under mechanical strain. Front Biosci, 2005, 10: 74-82.

[40]

Dai J, Rabie ABM. VEGF: an essential mediator of both angiogenesis and endochondral ossification. J Dent Res, 2007, 86(10): 937-950.

[41]

Cortina-Ramírez GE, Chimal-Monroy J. Differential effects of vascular endothelial growth factor on joint formation during limb development. Ann N Y Acad Sci, 2007, 1116: 134-140.

[42]

Bjork A. Cranial base development. Am J Orthod, 1955, 41(3): 198-225.

[43]

Lei WY, Wong RW, Rabie AB. Factors regulating endochondral ossification in the spheno-occipital synchondrosis. Angle Orthod, 2008, 78(2): 215-220.

[44]

Gerber HP, Vu TH, Ryan AM. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med, 1999, 5(6): 623-628.

[45]

Geiger F, Bertram H, Berger I. Vascular endothelial growth factor gene-activated matrix (VEGF165-GAM) enhances osteogenesis and angiogenesis in large segmental bone defects. J Bone Miner Res, 2005, 20(11): 2028-2035.

[46]

Peng H, Wright V, Usas A. Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest, 2002, 110(6): 751-759.

[47]

Rabie AB, Zhao Z, Shen G. Osteogenesis in the glenoid fossa in response to mandibular advancement. Am J Orthod Dentofacial Orthop, 2001, 119(4): 390-400.

[48]

Shum L, Rabie AB, Hägg U. Vascular endothelial growth factor expression and bone formation in posterior glenoid fossa during stepwise mandibular advancement. Am J Orthod Dentofacial Orthop, 2004, 125(2): 185-190.

[49]

Tatsuyama K, Maezawa Y, Baba H. Expression of various growth factors for cell proliferation and cytodifferentiation during fracture repair of bone. Eur J Histochem, 2000, 44(3): 269-278.

[50]

Codivilla A. On the means of lengthening, in the lower limbs, the muscles and tissues which are shortened through deformity. Am J Orthop Surg, 1905, 2: 353-369.

[51]

Lewinson D, Maor G, Rozen N. Expression of vascular antigens by bone cells during bone regeneration in a membranous bone distraction system. Histochem Cell Biol, 2001, 116(5): 381-388.

[52]

Jacobsen KA, Al-Aql ZS, Wan C. Bone formation during distraction osteogenesis is dependent on both VEGFR1 and VEGFR2 signaling. J Bone Miner Res, 2008, 23(5): 596-609.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/