Advanced thermal-resistant aluminum conductor alloys: A comprehensive review

Behrouz Abnar , Samaneh Gashtiazar , Paul Rometsch , Mousa Javidani

International Journal of Minerals, Metallurgy, and Materials ›› 2026, Vol. 33 ›› Issue (1) : 68 -93.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2026, Vol. 33 ›› Issue (1) :68 -93. DOI: 10.1007/s12613-025-3265-9
Review
review-article

Advanced thermal-resistant aluminum conductor alloys: A comprehensive review

Author information +
History +
PDF

Abstract

This review provides a comprehensive overview of recent advancements in aluminum-based conductor alloys engineered to achieve superior mechanical strength and thermal stability without sacrificing electrical conductivity. Particular emphasis is placed on the role of microalloying elements—particularly Sc and Zr—in promoting the formation of coherent nanoscale precipitates such as Al3Zr, Al3Sc, and core–shell Al3(Sc,Zr) with metastable L12 crystal structures. These precipitates contribute significantly to high-temperature performance by enabling precipitation strengthening and stabilizing grain boundaries. The review also explores the emerging role of other rare earth elements (REEs), such as erbium (Er), in accelerating precipitation kinetics and improving thermal stability by retarding coarsening. Additionally, recent advancements in thermomechanical processing strategies are examined, with a focus on scalable approaches to optimize the strength–conductivity balance. These approaches involve multi-step heat treatments and carefully controlled manufacturing sequences, particularly the combination of cold drawing and aging treatment to promote uniform and effective precipitation. This review offers valuable insights to guide the development of cost-effective, high-strength, heat-resistant aluminum alloys beyond conductor applications, particularly those strengthened through microalloying with Sc and Zr.

Keywords

electrical conductivity / mechanical properties / rare earth elements / thermal stability / scandium- and zirconium-containing aluminium alloy

Cite this article

Download citation ▾
Behrouz Abnar, Samaneh Gashtiazar, Paul Rometsch, Mousa Javidani. Advanced thermal-resistant aluminum conductor alloys: A comprehensive review. International Journal of Minerals, Metallurgy, and Materials, 2026, 33(1): 68-93 DOI:10.1007/s12613-025-3265-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X.H. Li, X.L. Cui, H.Y. Liu, et al., Study on the improvement and mechanism of AA6101 electrical conductivity by trace TM (Zr, V, Ti) elements-assisted boron treatment, J. Alloy. Compd., 939(2023), art. No. 168728.

[2]

Liu L, Jiang JT, Zhang B, Shao WZ, Zhen L. Enhancement of strength and electrical conductivity for a dilute Al–Sc–Zr alloy via heat treatments and cold drawing. J. Mater. Sci. Technol., 2019, 35(6): 962.

[3]

S.N. Khangholi, M. Javidani, A. Maltais, and X.G. Chen, Effects of natural aging and pre-aging on the strength and electrical conductivity in Al–Mg–Si AA6201 conductor alloys, Mater. Sci. Eng. A, 820(2021), art. No. 141538.

[4]

Khangholi SN, Javidani M, Maltais A, Chen XG. Review on recent progress in Al–Mg–Si 6xxx conductor alloys. J. Mater. Res., 2022, 37(3): 670.

[5]

M. Yokota, Aluminum Alloy Electric Conductor Wire, U.S. Patents, Appl. 5/838,762, 1980.

[6]

Abnar B, Khangoli SN, Rometsch P, Javidani MMetallurgy and Materials Society of CIM. Effects of Cu addition and temperature on hot deformation behavior of Al–Mg–Si 6201 conductor alloys. Proceedings of the 63rd Conference of Metallurgists, COM 2024, 2025, Cham. Springer1649.

[7]

Yuan WH, Liang ZY. Effect of Zr addition on properties of Al–Mg–Si aluminum alloy used for all aluminum alloy conductor. Mater. Des., 2011, 32(8–9): 4195.

[8]

Davis JR. Aluminum and Aluminum Alloys, 2001

[9]

McQueen HJ, Xia X, Cui Y, Li B, Meng Q. Solution and precipitation effects on hot workability of 6201 alloy. Mater. Sci. Eng. A, 2001, 319–321: 420.

[10]

M. Khoshghadam-Pireyousefan, M. Javidani, A. Maltais, J. Lévesque, and X.G. Chen, Breaking the strength–conductivity paradigm in hypoeutectic Al–Si alloy via annealing-induced Si nanoprecipitation, Mater. Sci. Eng. A, 911(2024), art. No. 146924.

[11]

P.H.C. Rocha, S. Langlois, S. Lalonde, J.A. Araújo, and F.C. Castro, Influence of 1350 and 6201 aluminum alloys on the fatigue life of overhead conductors–A finite element analysis, Tribol. Int., 186(2023), art. No. 108661.

[12]

ASTM International, ASTM B317/B317M-07. Standard Specification for Aluminum-Alloy Extruded Bar, Rod, Tube, Pipe, and Structural Profiles for Electrical Purposes (Bus Conductor), 2015, West Conshohocken. ASTM International

[13]

ASTM International, ASTM B236/B236M-23. Standard Specification for Aluminum Bars for Electrical Purposes (Bus Bars), 2023, West Conshohocken. ASTM International

[14]

Guan RG, Shen YF, Zhao ZY, Wang X. A high-strength, ductile Al–0.35Sc–0.2Zr alloy with good electrical conductivity strengthened by coherent nanosized-precipitates. J. Mater. Sci. Technol., 2017, 33(3): 215.

[15]

Shao Q, Elgallad EM, Maltais A, Chen XG. Development of thermal-resistant Al–Zr based conductor alloys via microalloying with Sc and manipulating thermomechanical processing. J. Mater. Res. Technol., 2023, 25: 7528.

[16]

E.M. Elgallad, S.N. Khangholi, M. Javidani, A. Maltais, and X.G. Chen, Development of ultra-high-strength Al–Mg–Si conductor alloys with copper addition via scalable thermomechanical processes, Scripta Mater., 257(2025), art. No. 116462.

[17]

T. Dorin, S. Babaniaris, L. Jiang, A. Cassel, A. Eggeman, and J. Robson, Precipitation sequence in Al–Sc–Zr alloys revisited, Materialia, 26(2022), art. No. 101608.

[18]

Deane K, Kampe SL, Swenson D, Sanders PG. Precipitate evolution and strengthening in supersaturated rapidly solidified Al–Sc–Zr alloys. Metall. Mater. Trans. A, 2017, 48(4): 2030.

[19]

Chao RZ, Guan XH, Guan RG, et al. . Effect of Zr and Sc on mechanical properties and electrical conductivities of Al wires. Trans. Nonferrous Met. Soc. China, 2014, 24(10): 3164.

[20]

Marquis EA, Seidman DN, Dunand DC. Effect of Mg addition on the creep and yield behavior of an Al–Sc alloy. Acta Mater., 2003, 51(16): 4751.

[21]

Fuller CB, Seidman DN, Dunand DC. Mechanical properties of Al(Sc, Zr) alloys at ambient and elevated temperatures. Acta Mater., 2003, 51(16): 4803.

[22]

Senkov ON, Shagiev MR, Senkova SV, Miracle DB. Precipitation of Al3(Sc,Zr) particles in an Al–Zn–Mg–Cu–Sc–Zr alloy during conventional solution heat treatment and its effect on tensile properties. Acta Mater., 2008, 56(15): 3723.

[23]

Knipling KE, Karnesky RA, Lee CP, Dunand DC, Seidman DN. Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at.%) alloys during isochronal aging. Acta Mater., 2010, 58(15): 5184.

[24]

Czerwinski F. Critical Assessment 36: Assessing differences between the use of cerium and scandium in aluminium alloying. Mater. Sci. Technol., 2020, 36(3): 255.

[25]

Babaniaris S, Ramajayam M, Jiang L, Langan T, Dorin TChesonis C. Developing an optimized homogenization process for Sc and Zr containing Al–Mg–Si alloys. Light Metals 2019, 2019, Cham. Springer1445.

[26]

Tzeng YC, Chung CY, Chien HC. Effects of trace amounts of Zr and Sc on the recrystallization behavior and mechanical properties of Al–4.5Zn–1.6Mg alloys. Mater. Lett., 2018, 228: 270.

[27]

Zhang YZ, Zhou W, Gao HY, et al. . Precipitation evolution of Al–Zr–Yb alloys during isochronal aging. Scripta Mater., 2013, 69(6): 477.

[28]

Booth-Morrison C, Dunand DC, Seidman DN. Coarsening resistance at 400°C of precipitation-strengthened Al–Zr–Sc–Er alloys. Acta Mater., 2011, 59(18): 7029.

[29]

The United States Geological Survey, Rare Earths Statistics and Information, National Minerals Information Center [2025-03-25]. https://www.usgs.gov/centers/national-minerals-information-center/rare-earths-statistics-and-information

[30]

Rare Earths, The Institute of Rare Earths and Metals [2025-03-25]. https://en.institut-seltene-erden.de/rare-earths-and-metals/rare-earth/

[31]

Rare Earth Prices, Scrap Monster [2025-04-04]. https://www.scrapmonster.com/metal-prices/rare-earth

[32]

Rare Earth Metals Price, Shanghai Metals Market [2025-04-04]. https://www.metal.com/Rare-Earth-Metals

[33]

H.U. Sverdrup and A.E. Sverdrup, On the supply dynamics of scandium, global resources, production, oxide and metal price, a prospective modelling study using WORLD7, Biophys. Econ. Sustainability, 9(2024), No. 2, art. No. 2.

[34]

A.G. Mochugovskiy and A.V. Mikhaylovskaya, Comparison of precipitation kinetics and mechanical properties in Zr and Sc-bearing aluminum-based alloys, Mater. Lett., 275(2020), art. No. 128096.

[35]

Mao ZG, Seidman DN, Wolverton C. First-principles phase stability, magnetic properties and solubility in aluminum–rare-earth (Al–RE) alloys and compounds. Acta Mater., 2011, 59(9): 3659.

[36]

Wang WY, Pan QL, Lin G, et al. . Microstructure and properties of novel Al–Ce–Sc, Al–Ce–Y, Al–Ce–Zr and Al–Ce–Sc–Y alloy conductors processed by die casting, hot extrusion and cold drawing. J. Mater. Sci. Technol., 2020, 58: 155.

[37]

Medvedev AE, Murashkin MY, Enikeev NA, Valiev RZ, Hodgson PD, Lapovok R. Enhancement of mechanical and electrical properties of Al–RE alloys by optimizing rare-earth concentration and thermo-mechanical treatment. J. Alloy. Compd., 2018, 745: 696.

[38]

T. Dorin, M. Ramajayam, S. Babaniaris, L. Jiang, and T.J. Langan, Precipitation sequence in Al–Mg–Si–Sc–Zr alloys during isochronal aging, Materialia, 8(2019), art. No. 100437.

[39]

Ma KK, Wen HM, Hu T, et al. . Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater., 2014, 62: 141.

[40]

Y. Wang, L.J. Zhu, G.D. Niu, and J. Mao, Conductive Al alloys: The contradiction between strength and electrical conductivity, Adv. Eng. Mater., 23(2021), No. 5, art. No. 2001249.

[41]

Huskins EL, Cao B, Ramesh KT. Strengthening mechanisms in an Al–Mg alloy. Mater. Sci. Eng. A, 2010, 527(6): 1292.

[42]

Z.Z. Jin, M. Zha, Z.Y. Yu, et al., Exploring the Hall–Petch relation and strengthening mechanism of bimodal-grained Mg–Al–Zn alloys, J. Alloy. Compd., 833(2020), art. No. 155004.

[43]

Hansen N. Hall–Petch relation and boundary strengthening. ScriptaMater., 2004, 51(8): 801

[44]

Embury JD, Lloyd DJ, Ramachandran TRVasudevan AK, Doherty RD. Strengthening mechanisms in aluminum alloys. Treatise on Materials Science and Technology, 1989579vol. 31

[45]

Callister WDJr., Rethwisch DG. Fundamentals of Materials Science and Engineering: An Integrated Approach, 20206th ed.New York. John Wiley & Sons

[46]

Totten GE. ASM Handbook Volume 4E: Heat Treating of Nonferrous Alloys, 2016

[47]

Azarniya A, Taheri AK, Taheri KK. Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective. J. Alloy. Compd., 2019, 781: 945.

[48]

A. Mohammadi, N.A. Enikeev, M.Y. Murashkin, M. Arita, and K. Edalati, Developing age-hardenable Al–Zr alloy by ultra-severe plastic deformation: Significance of supersaturation, segregation and precipitation on hardening and electrical conductivity, Acta Mater., 203(2021), art. No. 116503.

[49]

Zhang Z, Chen DL. Contribution of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. Mater. Sci. Eng. A, 2008, 483–484: 148.

[50]

K. Yang, Y.H. Wang, M.X. Guo, et al., Recent development of advanced precipitation-strengthened Cu alloys with high strength and conductivity: A review, Prog. Mater. Sci., 138(2023), art. No. 101141.

[51]

Jiang SY, Wang RH. Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al–Mg–Si–Sc alloys. J. Mater. Sci. Technol., 2019, 35(7): 1354.

[52]

Y.X. Li, A. Hu, Y.T. Fu, et al., Al alloys and casting processes for induction motor applications in battery-powered electric vehicles: A review, Metals, 12(2022), No. 2, art. No. 216.

[53]

Andrews PV, West MB, Robeson CR. The effect of grain boundaries on the electrical resistivity of polycrystalline copper and aluminium. Philos. Mag. A, 1969, 19(161): 887.

[54]

Hou JP, Li R, Wang Q, et al. . Breaking the trade-off relation of strength and electrical conductivity in pure Al wire by controlling texture and grain boundary. J. Alloy. Compd., 2018, 769: 96.

[55]

J.X. Li, X.F. Yang, S.H. Xiang, et al., Effects of Sc and Zr addition on microstructure and mechanical properties of AA5182, Materials, 14(2021), No. 16, art. No. 4753.

[56]

Wang RH, Jiang SY, Chen BA, Zhu ZX. Size effect in the Al3Sc dispersoid-mediated precipitation and mechanical/electrical properties of Al–Mg–Si–Sc alloys. J. Mater. Sci. Technol., 2020, 57: 78.

[57]

Marquis EA, Seidman DN, Dunand DC. Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys [Acta Materialia 50(16), pp. 4021–4035]. Acta Mater., 2003, 51(1): 285.

[58]

Marquis EA, Seidman DN. Coarsening kinetics of nanoscale Al3Sc precipitates in an Al–Mg–Sc alloy. Acta Mater., 2005, 53(15): 4259.

[59]

Deng Y, Yin ZM, Zhao K, Duan JQ, He ZB. Effects of Sc and Zr microalloying additions on the microstructure and mechanical properties of new Al–Zn–Mg alloys. J. Alloy. Compd., 2012, 530: 71.

[60]

Zhang JY, Hu T, Yi DQ, Wang HX, Wang B. Double-shell structure of Al3(Zr,Sc) precipitate induced by thermomechanical treatment of Al–Zr–Sc alloy cable. J. Rare Earths, 2019, 37(6): 668.

[61]

T. Dorin, S. Babaniaris, L. Jiang, et al., Stability and stoichiometry of L12 Al3(Sc,Zr) dispersoids in Al-(Si)-Sc–Zr alloys, Acta Mater., 216(2021), art. No. 117117.

[62]

M.T. Zhang, T. Jiang, Y.F. Xie, et al., Microstructure evolution and strengthening mechanisms of an additive friction stir deposited multi-layer Al–Mg–Sc–Zr alloy, J. Alloy. Compd., 1004(2024), art. No. 175783.

[63]

Huang X, Pan QL, Li B, Liu ZM, Huang ZQ, Yin ZM. Effect of minor Sc on microstructure and mechanical properties of Al–Zn–Mg–Zr alloy metal-inert gas welds. J. Alloy. Compd., 2015, 629: 197.

[64]

Tian SK, Li JY, Zhang JL, Wulabieke Z, Lv D. Effect of Zr and Sc on microstructure and properties of 7136 aluminum alloy. J. Mater. Res. Technol., 2019, 8(5): 4130.

[65]

Kendig KL, Miracle DB. Strengthening mechanisms of an Al–Mg–Sc–Zr alloy. Acta Mater., 2002, 50(16): 4165.

[66]

S. Babaniaris, M. Ramajayam, L. Jiang, R. Varma, T. Langan, and T. Dorin, Effect of Al3(Sc,Zr) dispersoids on the hot deformation behaviour of 6xxx-series alloys: A physically based constitutive model, Mater. Sci. Eng. A, 793(2020), art. No. 139873.

[67]

Dai K, Ye JY, Wang ZG, Gao MQ, Chen JQ, Guan RG. Effects of Sc and Zr addition on the solidification and mechanical properties of Al–Fe alloys. J. Mater. Res. Technol., 2022, 18: 112.

[68]

Z.G. Lei, S.P. Wen, H. Huang, W. Wei, and Z.R. Nie, Grain refinement of aluminum and aluminum alloys by Sc and Zr, Metals, 13(2023), No. 4, art. No. 751.

[69]

Royset J, Ryum N. Scandium in aluminium alloys. Int. Mater. Rev., 2005, 50(1): 19.

[70]

Kasap S, Capper P. Springer Handbook of Electronic and Photonic Materials, 2017, Cham. Springer.

[71]

Khangholi SN, Javidani M, Maltais A, Chen XG. Optimization of mechanical properties and electrical conductivity in Al–Mg–Si 6201 alloys with different Mg/Si ratios. J. Mater. Res., 2020, 35(20): 2765.

[72]

Dorin T, Ramajayam M, Vahid A, Langan T. Aluminium scandium alloys. Fundamentals of Aluminium Metallurgy, 2018439.

[73]

Eskin DGMartin O. Sc applications in aluminum alloys: Overview of Russian research in the 20th century. Light Metals 2018, TMS 2018, 2018, Cham. Springer1565

[74]

Rometsch P, Fourmann J. Potential for Using Scandium in Extrusion Alloys. Presented at the Thirteenth International Aluminum Extrusion Technology Seminar & Exposition, 2024

[75]

Knipling KE, Seidman DN, Dunand DC. Ambient- and high-temperature mechanical properties of isochronally aged Al–0.06Sc, Al–0.06Zr and Al–0.06Sc–0.06Zr (at.%) alloys. Acta Mater., 2011, 59(3): 943.

[76]

A. Elasheri, N. Parson, and X.G. Chen, Microstructure, tensile and bending properties of extruded Al–Mg–Si 6xxx alloys with individual and combined additions of Zr and Mn, Mater. Sci. Eng. A, 894(2024), art. No. 146156.

[77]

F. Czerwinski, Thermal stability of aluminum alloys, Materials, 13(2020), No. 15, art. No. 3441.

[78]

Suntharavel Muthaiah VM, Mula S. Effect of zirconium on thermal stability of nanocrystalline aluminium alloy prepared by mechanical alloying. J. Alloy. Compd., 2016, 688: 571. Part A

[79]

Robson JD, Prangnell PB. Dispersoid precipitation and process modelling in zirconium containing commercial aluminium alloys. Acta Mater., 2001, 49(4): 599.

[80]

Murray J, Peruzzi A, Abriata JP. The Al–Zr (aluminum–zirconium) system. J. Phase Equilib., 1992, 13(3): 277.

[81]

Knipling KE, Dunand DC, Seidman DN. Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during isothermal aging at 375–425°C. Acta Mater., 2008, 56(1): 114.

[82]

S.W. Pan, C.N. Li, F. Qian, L.L. Hao, and Y.J. Li, Diffusion controlled early-stage L12–D023 transitions within Al3Zr, Scripta Mater., 231(2023), art. No. 115460.

[83]

Knipling KE, Dunand DC, Seidman DN. Criteria for developing castable, creep-resistant aluminum-based alloys–A review. Int. J. Mater. Res., 2006, 97(3): 246.

[84]

Knipling KE, Dunand DC, Seidman DN. Nucleation and precipitation strengthening in dilute Al–Ti and Al–Zr alloys. Metall. Mater. Trans. A, 2007, 38(10): 2552.

[85]

Nes E. Precipitation of the metastable cubic Al3Zr-phase in subperitectic Al–Zr alloys. Acta Metall., 1972, 20(4): 499.

[86]

Knipling KE, Dunand DC, Seidman DN. Precipitation evolution in Al–Zr and Al–Zr–Ti alloys during aging at 450–600°C. Acta Mater., 2008, 56(6): 1182.

[87]

L.P. Ding, M.Q. Zhao, Z.H. Jia, et al., On the formation of anti-phase boundaries and interphase boundaries in Al3Zr precipitates of Al–Cu–Zr alloy studied at atomic scale, J. Alloy. Compd., 887(2021), art. No. 161442.

[88]

E. Clouet, J.M. Sanchez, and C. Sigli, First-principles study of the solubility of Zr in Al, Phys. Rev. B, 65(2002), No. 9, art. No. 094105.

[89]

Zhang JY, Gao YH, Yang C, et al. . Microalloying Al alloys with Sc: A review. Rare Met., 2020, 39(6): 636.

[90]

Wang Y, Liu HY, Ma XC, et al. . Effects of Sc and Zr on microstructure and properties of 1420 aluminum alloy. Mater. Charact., 2019, 154: 241.

[91]

Harada Y, Dunand DC. Microstructure of Al3Sc with ternary transition-metal additions. Mater. Sci. Eng. A, 2002, 329–331: 686.

[92]

Fukunaga K, Shouji T, Miura Y. Temperature dependence of dislocation structure of L12–Al3Sc. Mater. Sci. Eng. A, 1997, 239–240: 202.

[93]

Marquis EA, Seidman DN. Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys. Acta Mater., 2001, 49(11): 1909.

[94]

Fuller CB, Murray JL, Seidman DN. Temporal evolution of the nanostructure of Al(Sc, Zr) alloys: Part I–Chemical compositions of Al3(Sc1−xZrx) precipitates. Acta Mater., 2005, 53(20): 5401.

[95]

Shao Q, Elgallad EM, Maltais A, Chen XG. Thermal stability of Al–Zr–Sc conductor alloys during long-term elevated-temperature exposures. J. Mater. Res. Technol., 2025, 35: 164.

[96]

Toropova LS, Eskin DG, Kharakterova ML, Dobatkina TV. Advanced Aluminum Alloys Containing Scandium, 2017, London. Routledge.

[97]

Clouet E, Laé L, Épicier T, Lefebvre W, Nastar M, Deschamps A. Complex precipitation pathways in multicomponent alloys. Nat. Mater., 2006, 5(6): 482

[98]

Zhang JY, Zhao HT, Zhu JH, Wang B, Yi DQ. Relationship between electrical resistivity and Al3(Zr,Sc) core–shell dispersoids of Al–Zr–Sc electrical transmission cable: Modeling and experimental results. Electr. Power Syst. Res., 2019, 168: 1.

[99]

Forbord B, Lefebvre W, Danoix F, Hallem H, Marthinsen K. Three dimensional atom probe investigation on the formation of Al3(Sc,Zr)-dispersoids in aluminium alloys. Scripta Mater., 2004, 51(4): 333.

[100]

Wang Y, Zhang Z, Wu RZ, et al. . Ambient-temperature mechanical properties of isochronally aged 1420-Sc–Zr aluminum alloy. Mater. Sci. Eng. A, 2019, 745: 411.

[101]

Wang Y, Zhang S, Wu RZ, et al. . Coarsening kinetics and strengthening mechanisms of core-shell nanoscale precipitates in Al–Li–Yb–Er–Sc–Zr alloy. J. Mater. Sci. Technol., 2021, 61: 197.

[102]

Qi Y, Zhang H, Yang X, et al. . Achieving superior high-temperature mechanical properties in Al–Cu–Li–Sc–Zr alloy with nano-scale microstructure via laser additive manufacturing. Mater. Res. Lett., 2024, 12(1): 17.

[103]

Marumo T, Fujikawa S, Hirano KI. Diffusion of zirconium in aluminum. J. Jpn. Inst. Light. Met., 1973, 23(1): 17.

[104]

Deng Y, Yin ZM, Pan QL, Xu GF, Duan YL, Wang YJ. Nano-structure evolution of secondary Al3(Sc1−xZrx) particles during superplastic deformation and their effects on deformation mechanism in Al–Zn–Mg alloys. J. Alloy. Compd., 2017, 695: 142.

[105]

Y.Q. Sun, Q.L. Pan, Y.H. Luo, et al., The effects of scandium heterogeneous distribution on the precipitation behavior of Al3(Sc,Zr) in aluminum alloys, Mater. Charact., 174(2021), art. No. 110971.

[106]

Seidman DN, Marquis EA, Dunand DC. Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys. Acta Mater., 2002, 50(16): 4021.

[107]

Xue N, Liu WQ, Zhu L, Muthuramalingam T. Effect of scandium in Al–Sc and Al–Sc–Zr alloys under precipitation strengthening mechanism at 350°C aging. Met. Mater. Int., 2021, 27(12): 5145.

[108]

A.R. Farkoosh, D.C. Dunand, and D.N. Seidman, Effects of W and Si microadditions on microstructure and the strength of dilute precipitation-strengthened Al–Zr–Er alloys, Mater. Sci. Eng. A, 798(2020), art. No. 140159.

[109]

Zhang JY, Wang HX, Yi DQ, Wang B, Wang HS. Comparative study of Sc and Er addition on microstructure, mechanical properties, and electrical conductivity of Al–0.2Zr-based alloy cables. Mater. Charact., 2018, 145: 126.

[110]

Tolley A, Radmilovic V, Dahmen U. Segregation in Al3(Sc,Zr) precipitates in Al–Sc–Zr alloys. Scripta Mater., 2005, 52(7): 621.

[111]

S.H. Wu, H. Xue, C. Yang, et al., Effect of Si addition on the precipitation and mechanical/electrical properties of dilute Al–Zr–Sc alloys, Mater. Sci. Eng. A, 812(2021), art. No. 141150.

[112]

Vafaeenezhad H, Shahverdi HR. Impact of vanadium presence on the mechanical and microstructural characteristics of a dilute Al–Sc–Zr–Si alloy during isothermal aging. J. Mater. Res. Technol., 2024, 30: 2406.

[113]

Xu XX, Yang Z, Ye YL, Wang GX, He XL. Effects of various Mg/Si ratios on microstructure and performance property of Al–Mg–Si alloy cables. Mater. Charact., 2016, 119: 114.

[114]

Booth-Morrison C, Mao Z, Diaz M, Dunand DC, Wolverton C, Seidman DN. Role of silicon in accelerating the nucleation of Al3(Sc,Zr) precipitates in dilute Al–Sc–Zr alloys. Acta Mater., 2012, 60(12): 4740.

[115]

H. Vafaeenezhad and H.R. Shahverdi, Synergic effects of Si and V micro-additions on microstructural and mechanical properties of a dilute Al–Sc–Zr alloy containing L12Al3(Sc, Zr, V) nanoprecipitates, J. Alloy. Compd., 967(2023), art. No. 171747.

[116]

Erdeniz D, Nasim W, Malik J, et al. . Effect of vanadium micro-alloying on the microstructural evolution and creep behavior of Al–Er–Sc–Zr–Si alloys. Acta Mater., 2017, 124: 501.

[117]

Zhang JY, Peng J. A review on aluminum alloy conductors influenced by alloying elements and thermomechanical treatments: Microstructure and properties. J. Mater. Res., 2023, 38(6): 1488.

[118]

Vo NQ, Dunand DC, Seidman DN. Improving aging and creep resistance in a dilute Al–Sc alloy by microalloying with Si, Zr and Er. Acta Mater., 2014, 63: 73.

[119]

Edwards GA, Stiller K, Dunlop GL, Couper MJ. The precipitation sequence in Al–Mg–Si alloys. Acta Mater., 1998, 46(11): 3893.

[120]

Yuan X, Zhou J, Li XF, et al. . Microstructures and mechanical properties of cast Al–Mg–Si alloy with combined addition of Sc and Zr. J. Mater. Res. Technol., 2025, 35: 5097.

[121]

S. Babaniaris, M. Ramajayam, L. Jiang, T. Langan, and T. Dorin, Tailored precipitation route for the effective utilisation of Sc and Zr in an Al–Mg–Si alloy, Materialia, 10(2020), art. No. 100656.

[122]

Dorin T, Jiang L, Langan TBroek S. Formation of Al3Sc dispersoids and associated strengthening. Light Metals 2023, TSM 2023, 2023, Cham. Springer1207

[123]

Aryshenskii EV, Lapshov MA, Rasposienko DY, Konovalov SV, Drits AM, Makarov VV. Studying the effect of small additives of Sc and Zr on the microstructure of Al–Mg–Si alloy with excess silicon during multi-step heat treatment. Phys. Metals Metallogr., 2024, 125(2): 142.

[124]

Rometsch PA, Xu Z, Zhong H, Yang H, Ju L, Wu XH. Strength and electrical conductivity relationships in Al–Mg–Si and Al–Sc alloys. Mater. Sci. Forum, 2014, 794–796: 827.

[125]

M. Yu, B. Zhu, N. Li, H.Y. Zheng, Y. Lu, and X.P. Yu, Study on microstructure, tensile performance and creep resistance of Al–Mg–Si–Sc–Zr alloy strengthened by Al3(Sc,Zr) nanoprecipitates, Mater. Sci. Eng. A, 897(2024), art. No. 146362.

[126]

Dorin T, Ramajayam M, Babaniaris S, Langan TJ. Micro-segregation and precipitates in as-solidified Al–Sc–Zr–(Mg)–(Si)–(Cu) alloys. Mater. Charact., 2019, 154: 353.

[127]

Elasheri A, Elgallad EM, Parson N, Chen XG. Evolution of Zr-bearing dispersoids during homogenization and their effects on hot deformation and recrystallization resistance in Al–0.8%Mg–1.0%Si alloy. J. Mater. Eng. Perform., 2021, 30(10): 7851.

[128]

E. Aryshenskii, M. Lapshov, S. Konovalov, J. Hirsch, V. Aryshenskii, and S. Sbitneva, The casting rate impact on the microstructure in Al–Mg–Si alloy with silicon excess and small Zr, Sc additives, Metals, 11(2021), No. 12, art. No. 2056.

[129]

E. Aryshenskii, M. Lapshov, J. Hirsch, et al., Influence of the small Sc and Zr additions on the as-cast microstructure of Al–Mg–Si alloys with excess silicon, Metals, 11(2021), No. 11, art. No. 1797.

[130]

De Luca A, Dunand DC, Seidman DN. Microstructure and mechanical properties of a precipitation-strengthened Al–Zr–Sc–Er–Si alloy with a very small Sc content. Acta Mater., 2018, 144: 80.

[131]

Y.P. Kong, Z.H. Jia, Z.P. Liu, M.P. Liu, H.J. Roven, and Q. Liu, Effect of Zr and Er on the microstructure, mechanical and electrical properties of Al–0.4Fe alloy, J. Alloy. Compd., 857(2021), art. No. 157611.

[132]

Zhang CM, Yin DF, Jiang Y, Wang YR. Precipitation of L12-phase nano-particles in dilute Al–Er–Zr alloys from the first-principles. Comput. Mater. Sci., 2019, 162: 171.

[133]

Czerwinski F. Aluminum alloys for electrical engineering: A review. J. Mater. Sci., 2024, 59(32): 14847.

[134]

Sun YW, Pan QL, Huang ZQ, et al. . Evolutions of diffusion activation energy and Zener–Hollomon parameter of ultra-high strength Al–Zn–Mg–Cu–Zr alloy during hot compression. Prog. Nat. Sci. Mater. Int., 2018, 28(5): 635.

[135]

T.A. Pan, Y.C. Tzeng, H.Y. Bor, K.H. Liu, and S.L. Lee, Effects of the coherency of Al3Zr on the microstructures and quench sensitivity of Al–Zn–Mg–Cu alloys, Mater. Today Commun., 28(2021), art. No. 102611.

[136]

Booth-Morrison C, Seidman DN, Dunand DC. Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al–Zr–Sc–Si alloys. Acta Mater., 2012, 60(8): 3643.

[137]

Y.W. Guo, W. Wei, W. Shi, et al, Effect of Er and Zr additions and aging treatment on grain refinement of aluminum alloy fabricated by laser powder bed fusion, J. Alloy. Compd., 912(2022), art. No. 165237.

[138]

Nasim W, Yazdi S, Santamarta R, et al. . Structure and growth of core-shell nanoprecipitates in Al–Er–Sc–Zr–V–Si high-temperature alloys. J. Mater. Sci., 2019, 54(2): 1857.

[139]

Wen SP, Gao KY, Li Y, Huang H, Nie ZR. Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy. Scripta Mater., 2011, 65(7): 592.

[140]

J.R. Xiao, J.Y. Ye, P.L. Li, S.Q. Jiang, F.S. Zhu, and Z.G. Wang, Optimization of microstructure and properties of new Al–Ce–Sc alloy wires in drawn state, J. Alloy. Compd., 1027(2025), art. No. 180623.

[141]

Czerwinski F. Cerium in aluminum alloys. J. Mater. Sci., 2020, 55(1): 24.

[142]

Lin GJ, Li L, Guo ZW, et al. . Influence of cerium and yttrium addition on strength and electrical conductivity of pure aluminum alloys. J. Rare Earths, 2024, 42(3): 600.

[143]

Pozdniakov AV, Aitmagambetov AR, Makhov SV, Napalkov VI. Effect of impurities of Fe and Si on the structure and strengthening upon annealing of the Al–0.2% Zr–0.1% Sc alloys with and without Y additive. Phys. Metals Metallogr., 2017, 118(5): 479.

[144]

F. Czerwinski and B. Shalchi Amirkhiz, On the Al–Al11Ce3 eutectic transformation in aluminum-cerium binary alloys, Materials, 13(2020), No. 20, art. No. 4549.

[145]

Yuan WH, Liang ZY, Zhang CY, Wei LJ. Effects of La addition on the mechanical properties and thermal-resistant properties of Al–Mg–Si–Zr alloys based on AA 6201. Mater. Des., 2012, 34: 788.

[146]

Moons T, Ratchev P, De Smet P, Verlinden B, Van Houtte P. A comparative study of two Al–Mg–Si alloys for automotive applications. Scripta Mater., 1996, 35(8): 939.

[147]

Hosseinifar M, Malakhov DV. The sequence of intermetallics formation during the solidification of an Al–Mg–Si alloy containing La. Metall. Mater. Trans. A, 2011, 42(3): 825.

[148]

Kang W, Li HY, Zhao SX, Han Y, Yang CL, Ma G. Effects of homogenization treatments on the microstructure evolution, microhardness and electrical conductivity of dilute Al–Sc–Zr–Er alloys. J. Alloy. Compd., 2017, 704: 683.

[149]

Fan SY, Feng JW, Li ZH, et al. . Achieving superior strength and conductivity for Al–Zr–Sc wires by coupling design of deformation and ageing. Mater. Res. Lett., 2024, 12(8): 590.

[150]

M.L. Wang, Z.Y. Bian, A.L. Zhu, et al., Optimizing the heat treatment method to improve the aging response of Al–Fe–Ni–Sc–Zr alloys, Materials, 17(2024), No. 8, art. No. 1772.

[151]

A.Y. Algendy, K. Liu, P. Rometsch, N. Parson, and X.G. Chen, Effects of AlMn dispersoids and Al3(Sc,Zr) precipitates on the microstructure and ambient/elevated-temperature mechanical properties of hot-rolled AA5083 alloys, Mater. Sci. Eng. A, 855(2022), art. No. 143950.

[152]

J.G. Jung, A.R. Farkoosh, and D.N. Seidman, Microstructural and mechanical properties of precipitation-strengthened Al–Mg–Zr–Sc–Er–Y–Si alloys, Acta Mater., 257(2023), art. No. 119167.

[153]

Fan SY, Li ZH, Xiao WL, et al. . Effects of processing paths on the microstructure, mechanical properties and electrical conductivity of dilute Al–Zr–Sc alloy conductive wires. J. Mater. Sci. Technol., 2024, 188: 202.

[154]

Y. Yang, J.J. Licavoli, and P.G. Sanders, Improved strengthening in supersaturated Al–Sc–Zr alloy via melt-spinning and extrusion, J. Alloy. Compd., 826(2020), art. No. 154185.

[155]

S. Gashtiazar, E.M. Elgallad, B. Abnar, M. Javidani, A. Maltais, and X.G. Chen, Effect of solution heat treatment on the microstructure of hot-rolled Al–Mg–Si 6xxx alloy microal-loyed with Sc and Zr, Mater. Lett., 396(2025), art. No. 138784.

[156]

M. Yu, B. Zhu, N. Li, H.Y. Zheng, Y. Lu, and X.P. Yu, Research on microstructure and mechanical properties at elevated temperature of Al–Mg–Si–Sc–Zr alloy strengthened by Al3(Sc,Zr) nanoprecipitates, J. Alloy. Compd., 985(2024), art. No. 174050.

[157]

J.N. Fu, Z. Yang, Y.L. Deng, Y.F. Wu, and J.Q. Lu, Influence of Zr addition on precipitation evolution and performance of Al–Mg–Si alloy conductor, Mater. Charact., 159(2020), art. No. 110021.

[158]

Y. Liu, Y.X. Lai, Z.Q. Chen, S.L. Chen, P. Gao, and J.H. Chen, Formation of β″-related composite precipitates in relation to enhanced thermal stability of Sc-alloyed Al–Mg–Si alloys, J. Alloy. Compd., 885(2021), art. No. 160942.

[159]

Kwon EP, Woo KD, Kim SH, Kang DS, Lee KJ, Jeon JY. The effect of an addition of Sc and Zr on the precipitation behavior of AA6061 alloy. Met. Mater. Int., 2010, 16(5): 701.

[160]

E. Avtokratova, O. Sitdikov, M. Markushev, M. Linderov, D. Merson, and A. Vinogradov, The processing route towards outstanding performance of the severely deformed Al–Mg–Mn–Sc–Zr alloy, Mater. Sci. Eng. A, 806(2021), art. No. 140818.

[161]

Lai J, Zhang Z, Chen XG. The thermal stability of mechanical properties of Al–B4C composites alloyed with Sc and Zr at elevated temperatures. Mater. Sci. Eng. A, 2012, 532: 462.

[162]

G.Q. Huang, J. Wu, W.T. Hou, et al., A novel two-step method to prepare fine-grained SiC/Al–Mg–Sc–Zr nanocomposite: Processing, microstructure and mechanical properties, Mater. Sci. Eng. A, 823(2021), art. No. 141764.

[163]

Y. Liu, C.C. Zhang, X.Y. Zhang, and Y.C. Huang, Understanding grain refinement of Sc addition in a Zr containing Al–Zn–Mg–Cu aluminum alloy from experiments and first-principles, Intermetallics, 123(2020), art. No. 106823.

[164]

Li B, Du Y, Zheng ZS, et al. . Manipulation of mechanical properties of 7xxx aluminum alloy via a hybrid approach of machine learning and key experiments. J. Mater. Res. Technol., 2022, 19: 2483.

[165]

W. Yi, G.C. Liu, J.B. Gao, and L.J. Zhang, Boosting for concept design of casting aluminum alloys driven by combining computational thermodynamics and machine learning techniques, J. Mater. Inf., 1(2021), art. No. 11.

[166]

Korkmaz A, Yaǧci T, Çulha O. Optimization of T6 heat treatments for AlSi5Mgx alloys via computational materials engineering and experimental validation for automotive applications. J. Mater. Eng. Perform., 2025, 34(14): 14157.

[167]

Aryshenskii EV, Konovalov S, Bazhenov V, Hirsch J. Features of the microstructural composition of low-alloyed aluminum alloys of the 6XXX series with small additions of Zr and Sc. Key Eng. Mate., 2022, 910: 994.

[168]

A. Ghosh, A. Elasheri, N. Parson, and X.G. Chen, Microstructure and texture evolution during high-temperature compression of Al–Mg–Si–Zr–Mn alloy, Mater. Charact., 205(2023), art. No. 113312.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

PDF

31

Accesses

0

Citation

Detail

Sections
Recommended

/