Recent advances and perspectives in interface engineering of high-performance alloys

Yuan Zhu , Tongbo Jiang , Honghui Wu , Faguo Hou , Xiaoye Zhou , Feiyang Wang , Shuize Wang , Junheng Gao , Haitao Zhao , Chaolei Zhang

International Journal of Minerals, Metallurgy, and Materials ›› 2026, Vol. 33 ›› Issue (1) : 53 -67.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2026, Vol. 33 ›› Issue (1) :53 -67. DOI: 10.1007/s12613-025-3234-3
Review
review-article

Recent advances and perspectives in interface engineering of high-performance alloys

Author information +
History +
PDF

Abstract

High-performance alloys are indispensable in modern engineering because of their exceptional strength, ductility, corrosion resistance, fatigue resistance, and thermal stability, which are all significantly influenced by the alloy interface structures. Despite substantial efforts, a comprehensive overview of interface engineering of high-performance alloys has not been presented so far. In this study, the interfaces in high-performance alloys, particularly grain and phase boundaries, were systematically examined, with emphasis on their crystallographic characteristics and chemical element segregations. The effects of the interfaces on the electrical conductivity, mechanical strength, toughness, hydrogen embrittlement resistance, and thermal stability of the alloys were elucidated. Moreover, correlations among various types of interfaces and advanced experimental and computational techniques were examined using big data analytics, enabling robust design strategies. Challenges currently faced in the field of interface engineering and emerging opportunities in the field are also discussed. The study results would guide the development of next-generation high-performance alloys.

Keywords

interface engineering / crystallographic boundary / chemical boundary / alloy design

Cite this article

Download citation ▾
Yuan Zhu, Tongbo Jiang, Honghui Wu, Faguo Hou, Xiaoye Zhou, Feiyang Wang, Shuize Wang, Junheng Gao, Haitao Zhao, Chaolei Zhang. Recent advances and perspectives in interface engineering of high-performance alloys. International Journal of Minerals, Metallurgy, and Materials, 2026, 33(1): 53-67 DOI:10.1007/s12613-025-3234-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gao YC, Dong BX, Yang HY, et al. . Research progress, application and development of high performance 6000 series aluminum alloys for new energy vehicles. J. Mater. Res. Technol., 2024, 32: 1868.

[2]

Z.F. Wang and S. Zhang, Research and application progress of high-entropy alloys, Coatings, 13(2023), No. 11, art. No. 1916.

[3]

Pan GF, Wang FY, Shang CL, et al. . Advances in machine learning- and artificial intelligence-assisted material design of steels. Int. J. Miner. Metall. Mater., 2023, 30(6): 1003.

[4]

Bian ZY, Yang C, Zhu HY, et al. . Understanding the creep property of heat-resistant Al alloy by analyzing eutectic phase/matrix interface structures. Mater. Res. Lett., 2023, 11(3): 205.

[5]

Chen L, SL, Li JY, Guo W, Wu SS. Improving thermal conductivity of Mg–Si–Zn–Cu alloy through minimizing electron scattering at phase interface. J. Magnes. Alloys, 2024, 12(9): 3717.

[6]

F.S. Fan, J. Wang, H.F. Xu, et al., Balancing mechanical properties in tungsten-alumina oxide alloys via coherent/semi-coherent interfaces, Compos. PartB, 295(2025), art. No. 112204.

[7]

Z. Li, Z.H. Zhang, X.L. Liu, et al., Strength, plasticity and coercivity tradeoff in soft magnetic high-entropy alloys by multiple coherent interfaces, Acta Mater., 254(2023), art. No. 118970.

[8]

H.C. Wang, X. Zhang, D.S. Yan, C. Somsen, and G. Eggeler, Interface dominated cooperative nanoprecipitation in interstitial alloys, Nat. Commun., 9(2018), art. No. 4017.

[9]

Yang T, Zhao YL, Li WP, et al. . Ultrahigh-strength and ductile superlattice alloys with nanoscale disordered interfaces. Science, 2020, 369(6502): 427

[10]

Yao FJ, Li ZX, Hu B, Jiang ZF, Zeng XQ, Li DJ. Unveiling the interface between second phases and matrix on thermal conductivity of Mg alloys. J. Mater. Res. Technol., 2024, 28: 1824.

[11]

Yuan XY, Zhao Y, Li X, Chen LQ. Effect of Cr on mechanical properties and corrosion behaviors of Fe–Mn–C–Al–Cr–N TWIP steels. J. Mater. Sci. Technol., 2017, 33(12): 1555.

[12]

Zhang T, Deng HW, Xie ZM, et al. . Recent progresses on designing and manufacturing of bulk refractory alloys with high performances based on controlling interfaces. J. Mater. Sci. Technol., 2020, 52: 29.

[13]

Zhao Z, Chen J, Guo S, Tan H, Lin X, Huang WD. Influence of α/β interface phase on the tensile properties of laser cladding deposited Ti–6Al–4V titanium alloy. J. Mater. Sci. Technol., 2017, 33(7): 675.

[14]

Shen YJ, Wang JJ, Wang BB, et al. . Strengthening strategy for high-performance friction stir lap welded joints based on 5083 Al alloy. Int. J. Miner. Metall. Mater., 2024, 31(11): 2498.

[15]

Bobylev SV, Enikeev NA, Sheinerman AG, Valiev RZ. Strength enhancement induced by grain boundary solute segregations in ultrafine-grained alloys. Int. J. Plast., 2019, 123: 133.

[16]

Khan MA, Xu CH, Hamza M, et al. . Enhanced tensile strength in an Al–Zn–Mg–Cu alloy via engineering the precipitates along the grain boundaries. J. Mater. Res. Technol., 2023, 22: 696.

[17]

Liu L, Yu Q, Wang Z, Ell J, Huang MX, Ritchie RO. Making ultrastrong steel tough by grain-boundary delamination. Science, 2020, 368(6497): 1347

[18]

J. Tu, Y.N. Wang, D.Y. He, H.B. Peng, and Y.H. Wen, Ductile CuAlMn shape memory alloys with higher strength by Fe alloying and grain boundary engineering, Mater. Sci. Eng. A, 841(2022), art. No. 143032.

[19]

W.Q. Hu, L.F. Wei, Y.C. Li, et al., Phase interface engineering: A new route towards ultrastrong yet ductile Mo alloy, Mater. Sci. Eng. A, 889(2024), art. No. 145867.

[20]

Sun FB, Zhang R, Meng FC, Wang S, Huang LJ, Geng L. Interconnected microstructure and flexural behavior of Ti2C–Ti composites with superior Young’s modulus. Int. J. Miner. Metall. Mater., 2024, 31(9): 2088.

[21]

Weng F, Bi GJ, Chew Y, et al. . Robust interface and excellent as-built mechanical properties of Ti–6Al–4V fabricated through laser-aided additive manufacturing with powder and wire. Int. J. Miner. Metall. Mater., 2025, 32(1): 154.

[22]

W. Luo, Z. Liu, D. Zuo, et al., A novel strategy creating serrated grain boundaries to improve ductility in a Fe–Cr–Al alloy, Mater. Sci. Eng. A, 887(2023), art. No. 145789.

[23]

Z.Y. You, Z.Y. Tang, F.B. Chu, H. Ding, and R.D.K. Misra, Significantly enhancing elevated-temperature strength and ductility of a FeMnCoCr high-entropy alloy via grain boundary engineering: Exploring multi-deformation mechanisms, Mater. Sci. Eng. A, 886(2023), art. No. 145547.

[24]

C.L. Zhang, X.Y. Bao, M.Y. Hao, et al., Hierarchical nanomartensite-engineered a low-cost ultra-strong and ductile titanium alloy, Nat. Commun., 13(2022), art. No. 5966.

[25]

Y.L. Zhu, Y. Cao, W. Tian, et al., New insights into ductility improvement of a nickel-based superalloy through grain boundary engineering, Mater. Sci. Eng. A, 908(2024), art. No. 146786.

[26]

A. Jamali, A.X. Ma, and J. LLorca, Influence of grain size and grain boundary misorientation on the fatigue crack initiation mechanisms of textured AZ31 Mg alloy, Scripta Mater., 207(2022), art. No. 114304.

[27]

T.L. Li, H.P. Wu, D.Y. An, J.S. Chen, X.F. Li, and J. Chen, By introducing heterogeneous interfaces: Improved fatigue crack growth resistance of a metastable β titanium alloy, Scripta Mater., 220(2022), art. No. 114921.

[28]

B.C. Liu, K. Wang, R. Bao, and F.C. Sui, The effects of α/β phase interfaces on fatigue crack deflections in additively manufactured titanium alloy: A peridynamic study, Int. J. Fatigue, 137(2020), art. No. 105622.

[29]

Hong L, Huang M, Li HJ, Xu SY, Qin Y, Yang S. Effect of grain boundary character distribution on precipitation behavior and corrosion resistance of Al0.3CoCrFeNi1.5 high entropy alloy. J. Mater. Res. Technol., 2024, 33: 5088.

[30]

S.Y. Liu, Z. Xu, Y.J. Zhu, R.J. Shi, K.W. Gao, and X.L. Pang, Superior hydrogen embrittlement resistance of CoCrNi-based medium-entropy alloy via coherent precipitation and grain boundary strengthening, Corros. Sci., 240(2024), art. No. 112483.

[31]

L. Ren, R.S. Tan, D. Zhang, and X.F. Zhang, Regulating grain boundary element distribution of Al–Cu alloy to improve corrosion resistance by boron addition, Corros. Sci., 244(2025), art. No. 112665.

[32]

Tang ZC, Xu W, Zhao DY, Zhang B. Improving the strength and SCC resistance of an Al–5Mg–3Zn alloy with low-angle grain boundary structure. J. Mater. Sci. Technol., 2023, 161: 63.

[33]

B.L. Zhang, Z.Q. Cao, J. Zhou, et al., Improving the hydrogen embrittlement resistance by straining the ferrite/cementite interfaces, Acta Mater., 270(2024), art. No. 119850.

[34]

H. Thota, R. Jeyaraam, L.R. Bairi, et al., Grain boundary engineering and its implications on corrosion behavior of equiatomic CoCrFeMnNi high entropy alloy, J. Alloy. Compd., 888(2021), art. No. 161500.

[35]

J.S. Cao, F.C. Li, Q.H. Zhang, et al., Exceptional thermal stability of nanostructured FeCoNiCrCu high entropy alloy facilitated by unusual grain boundary segregation, Scripta Mater., 234(2023), art. No. 115545.

[36]

Ding J, Shang Z, Zhang YF, Su R, Li J, Wang H, Zhang X. Tailoring the thermal stability of nanocrystalline Ni alloy by thick grain boundaries. Scripta Mater., 2020, 182: 21.

[37]

W. Xu, B. Zhang, K. Du, X.Y. Li, and K. Lu, Thermally stable nanostructured Al–Mg alloy with relaxed grain boundaries, Acta Mater., 226(2022), art. No. 117640.

[38]

R. Ding, Y.J. Yao, B.H. Sun, et al., Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels, Sci. Adv., 6(2020), No. 13, art. No. eaay1430.

[39]

X. Bai, Y.F. Li, X.W. Fang, et al., Innovative strategy to optimize the temperature-dependent lattice misfit and coherency of iridium-based γ/γ′ interfaces, Appl. Surf. Sci., 609(2023), art. No. 155369.

[40]

K.X. Chen, J.X. Shen, Z.X. Li, et al., Extra-ductile and strong tin bronze alloy via high-density intragranular ultra-nano precipitation with minimal lattice misfit, Scripta Mater., 234(2023), art. No. 115535.

[41]

R. Lehnert, M. Müller, M. Vollmer, et al., On the influence of crystallographic orientation on superelasticity - Fe–Mn–Al–Ni shape memory alloys studied by advanced in situ characterization techniques, Mater. Sci. Eng. A, 871(2023), art. No. 144830.

[42]

Z. Li, L. Wang, C. Liu, et al., In-situ twin-wire additive manufacturing: Integrated fabrication of refractory medium entropy alloy, correlation between orientation and slip systems activation, Addit. Manuf., 94(2024), art. No. 104454.

[43]

Zeng XK, Zhang CH, Zhu WG, et al. . Strain transfer behavior and crystallographic mechanism of crack initiation during cyclic deformation in zirconium. J. Mater. Sci. Technol., 2023, 162: 234.

[44]

Zhu YM, Xu SW, Nie JF. {101¯1}\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\{10\bar{1}1\}$$\end{document} Twin boundary structures in a Mg–Gd alloy. Acta Mater., 2018, 143: 1.

[45]

S. Gao, X.Q. Bao, K.C. Lu, J.H. Li, and X.X. Gao, Effect of incoherent phase boundary on fracture mechanism of sintered Nd–Fe–B alloy, Intermetallics, 125(2020), art. No. 106866.

[46]

F.F. Worsnop and C.C. Taşan, Crystallographic contributions to grain boundary cracking in an age-hardened copper alloy, Scripta Mater., 247(2024), art. No. 116108.

[47]

E.R. Homer, S. Patala, and J.L. Priedeman, Grain boundary plane orientation fundamental zones and structure–property relationships, Sci. Rep., 5(2015), art. No. 15476.

[48]

Chen SJ, Yu Q. The role of low angle grain boundary in deformation of titanium and its size effect. Scripta Mater., 2019, 163: 148.

[49]

Jiang SH, Wang H, Wu Y, et al. . Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature, 2017, 544(7651): 460

[50]

Chen XH, Zhuang XQ, Mo JW, et al. . Enhanced resistance to hydrogen embrittlement in a CrCoNi-based medium-entropy alloy via grain-boundary decoration of boron. Mater. Res. Lett., 2022, 10(4): 278.

[51]

Jia HL, Bjørge R, Cao LF, Song H, Marthinsen K, Li YJ. Quantifying the grain boundary segregation strengthening induced by post-ECAP aging in an Al–5Cu alloy. Acta Mater., 2018, 155: 199.

[52]

Q. Yang, S.H. Lv, P.F. Qin, et al., Interphase boundary segregation induced phase transformation in a high-pressure die casting Mg–Al–La–Ca–Mn alloy, Mater. Des., 190(2020), art. No. 108566.

[53]

J. Yoo, M.C. Jo, M.C. Jo, et al., Effects of solid solution and grain-boundary segregation of Mo on hydrogen embrittlement in 32MnB5 hot-stamping steels, Acta Mater., 207(2021), art. No. 116661.

[54]

Araki S, Mashima K, Masumura T, Tsuchiyama T, Takaki S, Ohmura T. Effect of grain boundary segregation of carbon on critical grain boundary strength of ferritic steel. Scripta Mater., 2019, 169: 38.

[55]

Q. Lu, J.C. Wang, H.C. Li, et al., Synergy of multiple precipitate/matrix interface structures for a heat resistant high-strength Al alloy, Nat. Commun., 14(2023), art. No. 2959.

[56]

Liu JD, He ZH, Sha YH, et al. . Multiple impacts of trace Tb addition on the secondary recrystallization and magnetostriction of Fe–Ga thin sheet. Int. J. Miner. Metall. Mater., 2025, 32(4): 902.

[57]

Zhang XY, Zhu DX, Zhang CL, et al. . A review of crystal defect-induced element segregation in multi-component alloy steels. Prog. Nat. Sci. Mater. Int., 2024, 34(5): 840.

[58]

Jeong BS, Lee S, Yeh J, Park ES, Han HN. Role of grain boundary strength on yielding behavior and uniaxial tensile properties in ferritic steels. Met. Mater. Int., 2025, 31(1): 22.

[59]

Zhang XP, Xing H, Yang HJ, Teng F, Zhang Z, Wang JW. Solute coupling governed complex behaviours of precipitate/matrix interfaces in Al alloys. Mater. Today, 2025, 83: 284.

[60]

Han J, Vitek V, Srolovitz DJ. Grain-boundary metastability and its statistical properties. Acta Mater., 2016, 104: 259.

[61]

J. Hickman and Y. Mishin, Extra variable in grain boundary description, Phys. Rev. Mater., 1(2017), No. 1, art. No. 010601.

[62]

Bakonyi I, Isnaini VA, Kolonits T, et al. . The specific grain-boundary electrical resistivity of Ni. Philos. Mag., 2019, 99(9): 1139.

[63]

Z.J. Liao, L. Zhang, J.J. Xie, and X.X. Huang, Atomic-scale investigation on the structures and mechanical properties of metastable grain boundaries in aluminum, Mater. Today Commun., 41(2024), art. No. 110851.

[64]

Lu L, Shen YF, Chen XH, Qian LH, Lu K. Ultrahigh strength and high electrical conductivity in copper. Science, 2004, 304(5669): 422

[65]

Q. Yin, Z.Q. Wang, R. Mishra, and Z.H. Xia, Atomic simulations of twist grain boundary structures and deformation behaviors in aluminum, AIP Adv., 7(2017), No. 1, art. No. 015040.

[66]

Liang JY, Xie GL, Liu FX, Xue WL, Wang R, Liu XH. Optimizing the overall performance of Cu–Ni–Si alloy via controlling nanometer-lamellar discontinuous precipitation structure. Int. J. Miner. Metall. Mater., 2025, 32(4): 915.

[67]

Deng HL, Chen YB, Zhu Q, et al. . Controllable pseudoelasticity in metallic nanocrystals by grain boundary engineering. Nano Lett., 2024, 24(8): 2511

[68]

Q. Zhu, Q.S. Huang, C. Guang, et al., Metallic nanocrystals with low angle grain boundary for controllable plastic reversibility, Nat. Commun., 11(2020), art. No. 3100.

[69]

Bishara H, Lee SB, Brink T, Ghidelli M, Dehm G. Understanding grain boundary electrical resistivity in Cu: The effect of boundary structure. ACS Nano, 2021, 15(10): 16607

[70]

Furuhara T, Ogawa T, Maki T. Atomic structure of interphase boundary of an a precipitate plate in a β Ti[sbnd] Cr alloy. Philos. Mag. Lett., 1995, 72(3): 175.

[71]

Q. Sun, F.L. Wang, Y.X. Duan, J. Lu, L. Hua, and S.H. Liang, Interface microstructure evolution and mechanical properties enhancement of lamellar TC11 alloy under electromagnetic shocking treatment, J. Alloy. Compd., 1020(2025), art. No. 179437.

[72]

S.Q. Wang, T.Q. Wen, J. Han, and D.J. Srolovitz, Coherent and semicoherent α/β interfaces in titanium: Structure, thermodynamics, migration, NPJ Comput. Mater., 9(2023), art. No. 216.

[73]

Z.X. Wu, R. Turner, M.J. Qi, et al., Effect of phase boundary on the critical resolved shear stress and dislocation behavior of dual-phase titanium alloy, Acta Mater., 275(2024), art. No. 120051.

[74]

Wang KY, Lv SJ, Wu HH, et al. . Recent research progress on the phase-field model of microstructural evolution during metal solidification. Int. J. Miner. Metall. Mater., 2023, 30(11): 2095.

[75]

P.P. Wan, Q.S. Huang, M. Li, et al, Orientation effect on α/β phase interface mediated deformation mechanism in titanium alloy, Comput. Mater. Sci., 231(2024), art. No. 112616.

[76]

S.L. Wei, G.M. Zhu, and C.C. Tasan, Slip-twinning interdependent activation across phase boundaries: An in-situ investigation of a Ti–Al–V–Fe (α+β) alloy, Acta Mater., 206(2021), art. No. 116520.

[77]

Q.N. Han, S.Y. Zhao, Y.T. Tang, et al, FCC/B2 phase boundary variant-sensitive fatigue cracking in a eutectic high entropy alloy at high temperature, Int. J. Plast., 185(2025), art. No. 104223.

[78]

Wang FY, Wu HH, Zhou XY, et al. . First-principle study on the segregation and strengthening behavior of solute elements at grain boundary in BCC iron. J. Mater. Sci. Technol., 2024, 189: 247.

[79]

Koju RK, Mishin Y. Atomistic study of grain-boundary segregation and grain-boundary diffusion in Al–Mg alloys. Acta Mater., 2020, 201: 596.

[80]

F.D. León-Cázares and E.I. Galindo-Nava, General model for the kinetics of solute diffusion at solid-solid interfaces, Phys. Rev. Mater., 5(2021), No. 12, art. No. 123802.

[81]

B.N. Zhang, K. Xiong, M.Q. Wang, et al., Grain boundary alloying segregation to resist hydrogen embrittlement in BCC-Fe steels: Atomistic insights into solute-hydrogen interactions, Scripta Mater., 238(2024), art. No. 115757.

[82]

Hu J, Lin DL, Zhang Y. Equilibrium grain boundary segregation of calcium and equilibrium grain boundary depletion of silicon in Ni3Al. J. Mater. Sci. Lett., 2003, 22(12): 849.

[83]

Xia LD, Chen H, Yang ZG, Zhang C. Experimental and theoretical analysis of equilibrium segregation and radiation-induced segregation of Cr at grain boundaries in a reduced activation ferritic/martensitic (RAFM) steel. J. Iron Steel Res. Int., 2021, 28(4): 445.

[84]

Wang FY, Zhang XY, Zhang CL, et al. . Effect of alloy element on hydrogen-induced grain boundary embrittlement in BCC iron. J. Mater. Res. Technol., 2024, 33: 9439.

[85]

Wang ZQ, Wu HH, Wu Y, et al. . Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering. Mater. Today, 2022, 54: 83.

[86]

Z.Y. Li, Z.P. Li, and W.H. Tian, Strengthening effect of Nb on ferrite grain boundary in X70 pipeline steel, Materials, 14(2021), No. 1, art. No. 61.

[87]

Li XF, Cui Y, Zhang J. Enhancement of hydrogen embrittlement resistance in CoCrFeNi high-entropy alloy through the addition of MoB elements. Int. J. Hydrogen Energy, 2024, 92: 1306.

[88]

Zhang SQ, Qi LM, Liu SL, et al. . Synergistic effects of Nb and Mo on hydrogen-induced cracking of pipeline steels: A combined experimental and numerical study. J. Mater. Sci. Technol., 2023, 158: 156.

[89]

Wang XJ, Liu CQ, Guo EY, Xiao HQ. Toward strength-ductility synergy in as-rolled Mg–Zn–Gd alloy achieved by annealing-induced solute segregation. J. Rare Earths, 2025, 43(7): 1523.

[90]

X.Y. Qian, Z.H. Dong, B. Jiang, et al., Influence of alloying element segregation at grain boundary on the microstructure and mechanical properties of Mg–Zn alloy, Mater. Des., 224(2022), art. No. 111322.

[91]

Q. Li, J.W. Mo, S.H. Ma, et al., Defeating hydrogen-induced grain-boundary embrittlement via triggering unusual interfacial segregation in FeCrCoNi-type high-entropy alloys, Acta Mater., 241(2022), art. No. 118410.

[92]

Y. Liu, Y. Zhang, N.M. Xiao, X.W. Li, F.Z. Dai, and M.H. Chen, Investigating interfacial segregation of Ω/Al in Al–Cu alloys: A comprehensive study using density functional theory and machine learning, Acta Mater., 279(2024), art. No. 120294.

[93]

X.F. Zhang, S. Wang, M.H. Hua, R.R. Chen, W.P. Xu, and H.W. Wang, Oxygen-induced interfacial structure selection, dopant segregation and adhesive strength of α/β interfaces in titanium alloys, Scripta Mater., 267(2025), art. No. 116813.

[94]

B.N. Zhang, J. Su, M.Q. Wang, et al., Atomistic insight into hydrogen trapping at MC/BCC-Fe phase boundaries: The role of local atomic environment, Acta Mater., 208(2021), art. No. 116744.

[95]

Y.H. Jia, Z.J. Wang, Q.F. Wu, et al., Boron microalloying for high-temperature eutectic high-entropy alloys, Acta Mater., 262(2024), art. No. 119427.

[96]

J.J. Sun, H. Wang, B. Xu, et al., Making low-alloyed steel strong and tough by designing a dual-phase layered structure, Acta Mater., 227(2022), art. No. 117701.

[97]

Xu ZK, Hou YH, Nele M, Li GQ, Zhou SL. High-throughput first-principles study on the effect of Ni segregation on the formation of Cr-depleted zone and corrosion resistance of S32205 duplex stainless steels. J. Mater. Res. Technol., 2024, 30: 3474.

[98]

Khajonrit J, Sichumsaeng T, Kidkhunthod P, et al. . Enhancing electrochemical performance and magnetic properties of FeVO4 nanoparticles by Ni-doping: The role of Ni contents. Int. J. Miner. Metall. Mater., 2025, 32(4): 944.

[99]

Ma Y, Sun BH, Schökel A, et al. . Phase boundary segregation-induced strengthening and discontinuous yielding in ultrafine-grained duplex medium-Mn steels. Acta Mater., 2020, 200: 389.

[100]

Q.N. Wang, Y.P. Lu, Q. Yu, and Z. Zhang, The exceptional strong face-centered cubic phase and semi-coherent phase boundary in a eutectic dual-phase high entropy alloy AlCoCrFeNi, Sci. Rep., 8(2018), art. No. 14910.

[101]

H.K. Dong, Y.J. Zhang, G. Miyamoto, et al., Unraveling the effects of Nb interface segregation on ferrite transformation kinetics in low carbon steels, Acta Mater., 215(2021), art. No. 117081.

[102]

Dong LR, Zhang J, Li YZ, et al. . Borrowed dislocations for ductility in ceramics. Science, 2024, 385(6707): 422

[103]

G.H. Balbus, J. Kappacher, D.J. Sprouster, et al., Disordered interfaces enable high temperature thermal stability and strength in a nanocrystalline aluminum alloy, Acta Mater., 215(2021), art. No. 116973.

[104]

G.Y. Li, J.Y. Zhang, Y. Yang, et al., Symbiotically engineered crystalline-amorphous nanostructure in a strong-yet-stable Al alloy with large twinning-induced plasticity, Acta Mater., 257(2023), art. No. 119192.

[105]

Parajuli P, Romeu D, Hounkpati V, et al. . Misorientation dependence grain boundary complexions in symmetric tilt Al grain boundaries. Acta Mater., 2019, 181: 216.

[106]

X.Y. Zhou, A. Ahmadian, B. Gault, et al., Atomic motifs govern the decoration of grain boundaries by interstitial solutes, Nat. Commun., 14(2023), art. No. 3535.

[107]

J. Ding, S.L. Zhang, Q. Tong, et al., The effects of grain boundary misorientation on the mechanical properties and mechanism of plastic deformation of Ni/Ni3Al: A molecular dynamics study, Materials, 13(2020), No. 24, art. No. 5715.

[108]

Fu XQ, Wang XD, Zhao BK, et al. . Atomic-scale observation of non-classical nucleation-mediated phase transformation in a titanium alloy. Nat. Mater., 2022, 21(3): 290

[109]

Z.F. Huang, P. Wang, F. Chen, Q. Shen, and L.M. Zhang, Understanding solute effect on grain boundary strength based on atomic size and electronic interaction, Sci. Rep., 10(2020), art. No. 16856.

[110]

D. Scheiber, V. Razumovskiy, O. Peil, and L. Romaner, High-throughput first-principles calculations and machine learning of grain boundary segregation in metals, Adv. Eng. Mater., 26(2024), No. 19, art. No. 2400269.

[111]

Z. Xue, X.Y. Zhang, J.Q. Qin, M.Z. Ma, and R.P. Liu, Exploring th_e effects of solute segregation on the strength of Zr{{101¯1}\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\{10\bar{1}1\}$$\end{document}grain boundary: A first-principles study, J. Alloy. Compd., 812(2020), art. No. 152153.

[112]

N. Tuchinda, G.B. Olson, and C.A. Schuh, A grain boundary embrittlement genome for substitutional cubic alloys, Appl. Phys. Lett., 126(2025), No. 17, art. No. 171602.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

PDF

31

Accesses

0

Citation

Detail

Sections
Recommended

/