Revolutionizing titanium production: A comprehensive review of thermochemical and molten salt electrolysis processes

Haohang Ji , Shenghui Guo , Lei Gao , Li Yang , Hengwei Yan , Hongbo Zeng

International Journal of Minerals, Metallurgy, and Materials ›› 2026, Vol. 33 ›› Issue (1) : 15 -34.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2026, Vol. 33 ›› Issue (1) :15 -34. DOI: 10.1007/s12613-025-3210-y
Review
review-article

Revolutionizing titanium production: A comprehensive review of thermochemical and molten salt electrolysis processes

Author information +
History +
PDF

Abstract

Titanium exhibits outstanding properties, particularly, high specific strength and resistance to both high and low temperatures, earning it a reputation as the metal of the future. However, because of the highly reactive nature of titanium, metallic titanium production involves extensive procedures and high costs. Considering its advantages and limitations, the European Union has classified titanium metal as a critical raw material (CRM) of low category. The Kroll process is predominantly used to produce titanium; however, molten salt electrolysis (MSE) is currently being explored for producing metallic titanium at a low cost. Since 2000, electrolytic titanium production has undergone a wave of technological advancements. However, because of the intermediate and disproportionation reactions in the electrolytic titanium production process, the process efficiency and titanium purity according to industrial standards could not be achieved. Consequently, metallic titanium production has gradually diversified into employing technologies such as thermal reduction, MSE, and titanium alloy preparation. This study provides a comprehensive review of research advances in titanium metal preparation technologies over the past two decades, highlighting the challenges faced by the existing methods and proposing potential solutions. It offers useful insights into the development of low-cost titanium preparation technologies.

Keywords

titanium preparation / titanium alloy / thermal reduction / molten salt electrolysis

Cite this article

Download citation ▾
Haohang Ji, Shenghui Guo, Lei Gao, Li Yang, Hengwei Yan, Hongbo Zeng. Revolutionizing titanium production: A comprehensive review of thermochemical and molten salt electrolysis processes. International Journal of Minerals, Metallurgy, and Materials, 2026, 33(1): 15-34 DOI:10.1007/s12613-025-3210-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fink G. Encyclopedia of the elements. Angew. Chem. Int. Ed., 2005, 44: 3174.

[2]

Weng F, Bi GJ, Chew Y, et al. . Robust interface and excellent as-built mechanical properties of Ti–6Al–4V fabricated through laser-aided additive manufacturing with powder and wire. Int. J. Miner. Metall. Mater., 2025, 32(1): 154.

[3]

Wang R, Song X, Wang L, et al. . New role of α phase in the fracture behavior and fracture toughness of a β-type bio-titanium alloy. Int. J. Miner. Metall. Mater., 2023, 30(9): 1756.

[4]

Song YX, Xu S, Sato S, et al. . A lightweight shape-memory alloy with superior temperature-fluctuation resistance. Nature, 2025, 638(8052): 965

[5]

J. Sure, D.S.M. Vishnu, R.V. Kumar, U.K. Mudali, and C. Schwandt, Corrosion performance of electrochemically prepared Ti–5Ta–2Nb alloy in concentrated nitric acid, Mater. Today Commun., 26(2021), art. No. 101786.

[6]

Das GK, Pranolo Y, Zhu Z, Cheng CY. Leaching of ilmenite ores by acidic chloride solutions. Hydrometallurgy, 2013, 133: 94.

[7]

Qiu GZ, Guo YF. Current situation and development trend of titanium metal industry in China. Int. J. Miner. Metall. Mater., 2022, 29(4): 599.

[8]

Dill H G. The “chessboard” classification scheme of mineral deposits: Mineralogy and geology from aluminum to zirconium. Earth Sci. Rev., 2010, 100(1–4): 1.

[9]

Global Titanium Mining—Statistics & facts, [2025–04–25], https://www.statista.com/topics/11141/titanium-industry-worldwide/.

[10]

Turchinskaya O, Slyuta EN. Titanium and iron probable reserves in the lunar soil. 52nd Lunar and Planetary Science Conference 2021, 2021

[11]

Li C, Ma WH, Li Y, Wei KX. Metallurgical performance evaluation of space-weathered Chang’e-5 lunar soil. Int. J. Miner. Metall. Mater., 2024, 31(6): 1241.

[12]

Zhang WJCudnik B. Estimate of lunar TiO2 and FeO with M3 data. Encyclopedia of Lunar Science, 2023, Cham. Springer262.

[13]

Merle R, Höök M, Troll V, Giegling A. Assessing the plausibility of mining lunar titanium. Eur. Geol., 2024, 57: 43

[14]

Cai JZ, Deng JS, Wang L, et al. . Reagent types and action mechanisms in ilmenite flotation: A review. Int. J. Miner. Metall. Mater., 2022, 29(9): 1656.

[15]

Cai YF, Song NN, Yang YF, Sun LM, Hu P, Wang JS. Recent progress of efficient utilization of titanium-bearing blast furnace slag. Int. J. Miner. Metall. Mater., 2022, 29(1): 22.

[16]

Wang WH. Material flows and waste management of titanium products in China from 2005 to 2020. J. Sustain. Metall., 2023, 9(2): 564

[17]

Korecek D, Solfronk P, Sobotka J. A deformational analysis of a titanium alloy supported by the mathematical modelling of the sheet metal forming process via numerical simulation. Materials, 2025, 18(7): 1598

[18]

N. Matsanga, M. Wa Kalenga, and W. Nheta, An overview of thermochemical reduction processes for titanium production, Minerals, 15(2025), No. 1, art. No. 17.

[19]

V. Tebaldo, G. Gautier di Confiengo, D. Duraccio, and M.G. Faga, Sustainable recovery of titanium alloy: From waste to feedstock for additive manufacturing, Sustainability, 16(2024), No. 1, art. No. 330.

[20]

R.G. Reddy, P.S. Shinde, and A.M. Liu, Review: The emerging technologies for producing low-cost titanium, J. Electrochem. Soc., 168(2021), No. 4, art. No. 042502.

[21]

M. El Khalloufi, O. Drevelle, and G. Soucy, Titanium: An overview of resources and production methods, Minerals, 11(2021), No. 12, art. No. 1425.

[22]

Hunter MA. Metallic titanium. J. Am. Chem. Soc., 1910, 32(3): 330.

[23]

Hunter MA, Jones A. Titanium in metallurgy. Trans. Electrochem. Soc., 1934, 66(1): 21.

[24]

F.W. Hurd, Metal Reduction Process Employing Metal Subhalides, Google Patents, Appl. 4032329, 1977.

[25]

F.W. Hurd, Metal or Alloy Forming Reduction Process and Apparatus, Google Patents, Appl. 4687632, 1987.

[26]

Chen W, Yamamoto Y, Peter WH. Investigation of pressing and sintering processes of CP-Ti powder made by Armstrong process. Key Eng. Mater., 2010, 436: 123.

[27]

Weil KS, Hovanski Y, Lavender CA. Effects of TiCl4 purity on the sinterability of Armstrong-processed Ti powder. J. Alloy. Compd., 2009, 473(1–2): L39.

[28]

Xu XY, Nash P, Mangabhai D. Characterization and sintering of Armstrong process titanium powder. JOM, 2017, 69(4): 770.

[29]

Liu R, Hui SX, Ye WJ, et al. . Dynamic stress-strain properties of Ti–Al–V titanium alloys with various element contents. Rare Met., 2013, 32(6): 555.

[30]

Anderson R, Ernst W, Jacobsen L, Kogut D, Steed J. Commercialization of the Armstrong process for producing titanium alloy powder. Cost-Affordable Titanium: A Symposium Dedicated to Professor Harvey Flower as held at the 2004 TMS Annual Meeting, 2004121

[31]

Rivard JDK, Blue CA, Harper DC, et al. . The thermomechanical processing of titanium and Ti–6Al–4V thin gage sheet and plate. JOM, 2005, 57(11): 58.

[32]

Eylon D, Ernst WA, Kramer DP. Development of ultrafine microstructure in titanium via powder metallurgy for improved ductility and strength. Mater. Sci. Forum, 2008, 604–605: 223.

[33]

Imam MA, Pao PS, Bayles RASrivatsan TS, Imam MA, Srinivasan R. Stress-corrosion cracking and fatigue crack growth behavior of Ti–6Al–4V plates consolidated from low cost powders. Fatigue of Materials II, 2013, Cham. Springer105

[34]

Yamamoto Y, Kiggans JO, Clark MB, Nunn SD, Sabau AS, Peter WH. Consolidation process in near net shape manufacturing of Armstrong CP-Ti/Ti–6Al—4V powders. Key Eng. Mater., 2010, 436: 103.

[35]

Chen W, Yamamoto Y, Peter WH, et al. . Cold compaction study of Armstrong Process® Ti–6Al—4V powders. Powder Technol., 2011, 214(2): 194.

[36]

MacDonald D, Fernández R, Delloro F, Jodoin B. Cold spraying of Armstrong process titanium powder for additive manufacturing. J. Therm. Spray Technol., 2017, 26(4): 598.

[37]

Montonera D, Nash P. Sinter bonding titanium and Ti–6Al–4V. Int. J. Adv. Manuf. Technol., 2018, 96(5–8): 2907.

[38]

L.I. Perez-Andrade, V.S. Bhattiprolu, W.M. Schuette, and L.N. Brewer, Influence of powder properties and processing gas on the microstructural evolution of Armstrong CP-titanium and Ti6Al4V powders processed by cold spray, Surf. Coat. Technol., 431(2022), art. No. 128011.

[39]

Kroll W. The production of ductile titanium. Trans. Electrochem. Soc., 1940, 78(1): 35.

[40]

Kroll WJ. How commercial titanium and zirconium were born. J. Frankl. Inst., 1955, 260(3): 169.

[41]

Froes FH. The production of low-cost titanium powders. JOM, 1998, 50(9): 41.

[42]

Zheng HY, Ito H, Okabe TH. Production of titanium powder by the calciothermic reduction of titanium concentrates or ore using the preform reduction process. Mater. Trans., 2007, 48(8): 2244.

[43]

Okabe TH, Oda T, Mitsuda Y. Titanium powder production by preform reduction process (PRP). J. Alloy. Compd., 2004, 364(1–2): 156.

[44]

Jia JG, Xu BQ, Yang B, Wang DS, Xiong H, Liu DC. Behavior of intermediate CaTiO3 in reduction process of TiO2 by calcium vapor. Key Eng. Mater., 2013, 551: 25.

[45]

Hartman AD, Gerdemann SJ, Hansen JS. Producing lower-cost titanium for automotive applications. JOM, 1998, 50(9): 16.

[46]

Zhang Y, Fang ZZ, Sun P, et al. . Kinetically enhanced metallothermic redox of TiO2 by Mg in molten salt. Chem. Eng. J., 2017, 327: 169.

[47]

Zhang Y, Fang ZZ, Xia Y, et al. . A novel chemical pathway for energy efficient production of Ti metal from upgraded titanium slag. Chem. Eng. J., 2016, 286: 517.

[48]

Zhang Y, Fang ZZ, Xia Y, et al. . Hydrogen assisted magnesiothermic reduction of TiO2. Chem. Eng. J., 2017, 308: 299.

[49]

Brooks G, Cooksey M, Wellwood G, Goodes C. Challenges in light metals production. Miner. Process. Extr. Metall., 2007, 116(1): 25.

[50]

Ono K, Okabe T, Ogawa M, Suzuki R. Production of titanium powders by the calciothermic reduction of TiO2. Tetsu Hagane, 1990, 76(4): 568.

[51]

Hansen DA, Gerdemann SJ. Producing titanium powder by continuous vapor-phase reduction. JOM, 1998, 50(11): 56.

[52]

B. Wang, C.Y. Chen, J.Q. Li, L.Z. Wang, Y.P. Lan, and S.Y. Wang, Production of Fe–Ti alloys from mixed slag containing titanium and Fe2O3 via direct electrochemical reduction in molten calcium chloride, Metals, 10(2020), No. 12, art. No. 1611.

[53]

Duisebaev BO, Baitasov KM, Mukusheva AS. Theoretical basis for using hydrogen reduction in titanium production. At. Energy, 2019, 127(2): 127.

[54]

Froes FH, Mashl SJ, Hebeisen JC, Moxson VS, Duz VA. The technologies of titanium powder metallurgy. JOM, 2004, 56(11): 46.

[55]

S.K. Nayak, C.J. Hung, V. Sharma, et al., Insight into point defects and impurities in titanium from first principles, NPJ Comput. Mater., 4(2018), art. No. 11.

[56]

Bullard DE, Lynch DC. Reduction of titanium dioxide in a nonequilibrium hydrogen plasma. Metall. Mater. Trans. B, 1997, 28(6): 1069.

[57]

Choi K, Jeon HS, Lee S, Kim Y, Park H. Gaseous reduction behavior of primary ilmenite at temperatures between 1273 K and 1473 K. Metall. Mater. Trans. B, 2022, 53(1): 334.

[58]

Lv W, Lv XW, Xiang JY, et al. . Effect of preoxidation on the reduction of ilmenite concentrate powder by hydrogen. Int. J. Hydrogen Energy, 2019, 44(8): 4031.

[59]

Guo YF, Li PF, Jiang T, Travyanov AY, Zheng FQ, Qiu GZJiang T. Control of the forming behavior of anosovite in the reduction of ilmenite by hydrogen. 6th International Symposium on High-Temperature Metallurgical Processing, 2015, Cham. Springer611

[60]

Dang J, Hu XJ, Zhang GH, Hou XM, Yang XB, Chou K. Kinetics of reduction of titano-magnetite powder by H2. High Temp. Mater. Process., 2013, 32(3): 229.

[61]

J.W. Yu, Y. Ou, Y.S. Sun, Y.J. Li, and Y.X. Han, Hydrogen reduction behaviors and mechanisms of vanadium titanomagnetite ore under fluidized bed conditions, Powder Technol., 402(2022), art. No. 117340.

[62]

Yu JW, Hu N, Xiao HX, Gao P, Sun YS. Reduction behaviors of vanadium-titanium magnetite with H2via a fluidized bed. Powder Technol., 2021, 385: 83.

[63]

Li W, Fu GQ, Chu MS, Zhu MY. An effective and cleaner process to recovery iron, titanium, vanadium, and chromium from Hongge vanadium titanomagnetite with hydrogen-rich gases. IronmakingSteelmaking, 2021, 48(1): 33

[64]

Yeh CL, Li RF. Formation of TiB2–Al2O3 and NbB2–Al2O3 composites by combustion synthesis involving thermite reactions. Chem. Eng. J., 2009, 147(2–3): 405.

[65]

Liu GF, Li YW, Fan LX, Nath M, Xu YB, Liu J. Formation mechanism of Ti3AlC2 in TiO2–Al–C/TiC systems at high temperatures. Ceram. Int., 2022, 48(2): 2614.

[66]

Balakirev VF, Osinkina TV, Krasikov SA, Zhilina EM, Vedmid’ LB, Zhidovinova SV. Joint metallothermic reduction of titanium and rare refractory metals of group V. Russ. J. Non-Ferrous Metals, 2021, 62(2): 190.

[67]

Zhao K, Feng NXKim H, Alam S, Neelameggham N. A new two-stage aluminothermic reduction process for preparation of Ti/Ti–Al alloys. Rare Metal Technology 2017, 2017, Cham. Springer167.

[68]

de Brito RA, Gomes KKP, Chiavone-Filho O, Alves C. Reducción aluminotérmica del óxido de titanio (TiO2) por plasma de Cátodo hueco. Inf. Tecnol., 2013, 24(6): 23.

[69]

Huang QY, Lv XW, Huang R, Song JJ. Preparation of Ti–Si–Al alloy by aluminothermic reduction of TiO2 bearing blast furnace slag. Can. Metall. Q., 2013, 52(4): 413.

[70]

C.L. Yeh and C.Y. Ke, In situ formation of TiB2/Al2O3-reinforced Fe3Al by combustion synthesis with thermite reduction, Metals, 8(2018), No. 4, art. No. 288.

[71]

Liu AM, Xie KY, Li LX, et al. Jiang T, et al. . Preparation of Al–Ti master alloys by aluminothermic reduction of TiO2 in cryolite melts at 960°C. 6th International Symposium on High-Temperature Metallurgical Processing, 2015, Cham. Springer239

[72]

Razavi SS, Soltanieh M. The investigation of the aluminothermic reduction of dissolved ilmenite in molten cryolite. Can. Metall. Q., 2015, 54(4): 460.

[73]

Yeh CL, Yang WJ. Combustion Synthesis of (Ti, V)2AlC Solid Solutions. Adv. Mater. Res., 2014, 909: 19.

[74]

Yeh CL, Yang WJ. Formation of MAX solid solutions (Ti, V)2AlC and (Cr, V)2AlC with Al2O3 addition by SHS involving aluminothermic reduction. Ceram. Int., 2013, 39(7): 7537.

[75]

Gao ZJ, Lu HMLi L, Guillen DP, Neelameggham NR. Preparation of Ti–Al–V alloys by aluminothermic reaction. Energy Technology 2016, 2016, Cham. Springer65.

[76]

Yücel O, Çahin F. Production of aluminum–titanium–boron master alloy by aluminothermic process. High Temp. Mater. Process., 2001, 20(2): 137.

[77]

Lee JH, Nersisyan H, Lim KS, Kim WB, Choi WS. Combustion-aluminothermic reduction of TiO2 to produce titanium low oxygen suboxides. Metall. Mater. Trans. B, 2021, 52(6): 4012.

[78]

Zhu XF, Zheng SL, Zhang Y, et al. . Potentially more ecofriendly chemical pathway for production of high-purity TiO2 from titanium slag. ACS Sustainable Chem. Eng., 2019, 7(5): 4821.

[79]

Atasoy A. Reaction mechanism and kinetics in Ti3SiC2 synthesised from oxides. J. Therm. Anal. Calorim., 2018, 134(1): 363.

[80]

J.Z. Yang, Y.W. Wang, J.P. Peng, and Y.Z. Di, Reaction mechanism and kinetics of ferrotitanium preparation by aluminothermic reduction of CaTiO3, Mater. Today Commun., 30(2022), art. No. 102995.

[81]

Z.Y. Wang, J.L. Zhang, Z.J. Liu, et al., Production of ferrotitanium alloy from titania slag based on aluminothermic reduction, J. Alloy. Compd., 810(2019), art. No. 151969.

[82]

Zhao K, Wang YW, Gao F. Electrochemical extraction of titanium from carbon-doped titanium dioxide precursors by electrolysis in chloride molten salt. Ionics, 2019, 25(12): 6107.

[83]

B.L. Yan, J. Wang, T. Yang, et al., Synthesis of Ti powders with different morphologies via controlling the valence state of the titanium ion in KCl–NaCl molten salt, J. Electroanal. Chem., 876(2020), art. No. 114496.

[84]

Kumamoto K, Kishimoto A, Uda T. Low temperature electrodeposition of titanium in fluoride-added LiCl–KCl–CsCl molten salt. Mater. Trans., 2020, 61(8): 1651.

[85]

Sekimoto H, Nose Y, Uda T, Sugimura H. Quantitative analysis of titanium ions in the equilibrium with metallic titanium in NaCl–KCl equimolar molten salt. Mater. Trans., 2010, 51(11): 2121.

[86]

M.A. Steinberg, S.S. Carlton, M.E. Sibert, and E. Wainer, Preparation of titanium by fluoride electrolysis, J. Electrochem. Soc., 102(1955), No. 6, art. No. 332.

[87]

Chen G, Fray D, Farthing T. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride. Nature, 2000, 407(6802): 361

[88]

D.J. Fray, Removal of Oxygen from Metal oxides and Solid solutions by Electrolysis in a Fused Salt, International Patent, WO 99/64638, 1999.

[89]

Mohandas KS, Fray DJ. FFC cambridge process and removal of oxygen from metal-oxygen systems by molten salt electrolysis: An overview. Trans. Indian Inst. Met., 2004, 57(6): 579

[90]

Schwandt C, Fray DJ. Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride. Electrochim. Acta, 2005, 51(1): 66.

[91]

Li ZQ, Zhang N, Bai CG, Chen XL, Tao CY. Study on formation and transportation process of O2− in TiO2 electrode. Rare Met. Mater. Eng., 2010, 39(3): 473

[92]

Kobayashi K, Oka Y, Suzuki RO. Influence of current density on the reduction of TiO2 in molten salt (CaCl2 + CaO). Mater. Trans., 2009, 50(12): 2704.

[93]

Ma GQ, Zou M, Wang QL. Research on effect factors of current efficiency in the process of sponge titanium production by electrolytic method. Adv. Mater. Res., 2013, 873: 72.

[94]

Liu MF, Lu SG, Kan SR, Li GX. Effect of electrolysis voltage on electrochemical reduction of titanium oxide to titanium in molten calcium chloride. Rare Met., 2007, 26(6): 547.

[95]

Lai PS, Hu ML, Gao LZ, Qu ZF, Bai CGLi B. The anodic behavior of electro-deoxidation of titanium dioxide in calcium chloride molten salt. Characterization of Minerals, Metals, and Materials 2018, 2018, Cham. Springer409.

[96]

Haraguchi Y, Shibuya R, Natsui S, Kikuchi T, Suzuki RO. Gas generation reactions during TiO2 reduction using molten salt. J. Japan Inst. Metals, 2019, 83(11): 441.

[97]

Chen GZ, Fray DJ, Farthing TW. Cathodic deoxygenation of the alpha case on titanium and alloys in molten calcium chloride. Metall. Mater. Trans. B, 2001, 32(6): 1041.

[98]

Fray DJ. Emerging molten salt technologies for metals production. JOM, 2001, 53(10): 27.

[99]

S.C. Heck, M.F. de Oliveira, and E. Radovanovic, Ti production from natural rutile sand by the FFC process: Experimental and mathematical modelling study, J. Electroanal. Chem., 905(2022), art. No. 115996.

[100]

Wang BX, Lan XZ, Zhao XC, Zhang J. Reaction mechanism on electrochemical reduction of TiO2 to titanium. Chin. J. Rare Met., 2010, 34(4): 618

[101]

Nie XM, Dong LY, Bai CG, Chen DF, Qiu GB. Preparation of Ti by direct electrochemical reduction of solid TiO2 and its reaction mechanism. Trans. Nonferrous Met. Soc. China, 2006, 16: s723.

[102]

Wang B, Liu KR, Chen JS. Reaction mechanism of preparation of titanium by electro-deoxidation in molten salt. Trans. Nonferrous Met. Soc. China, 2011, 21(10): 2327.

[103]

S.C. Heck and E. Radovanovic, Determination of kinetic parameters for TiO2 and Nb2O5 molten salt FFC reduction by modelling experimental sweep voltammograms, J. Electroanal. Chem., 889(2021), art. No. 115233.

[104]

Jiang K, Hu XH, Ma M, et al. . “Perovskitization”-assisted electrochemical reduction of solid TiO2 in molten CaCl2. Angew. Chem. Int. Ed., 2006, 118(3): 442.

[105]

Natsui S, Sudo T, Shibuya R, Nogami H, Kikuchi T, Suzuki RO. Visualization of TiO2 reduction behavior in molten salt electrolysis. Metall. Mater. Trans. B, 2020, 51(1): 11.

[106]

K. Zhao and K.J. Liu, Investigation of the electrochemical reduction of porous CaTiO3 pellets in CaCl2%–0.5%CaO molten salt, J. Electrochem. Soc., 169(2022), No. 5, art. No. 052504.

[107]

G.L. Zhao, Y. Xu, and Y.Q. Cai, Effect of sintering temperature and porosity on electro-deoxidation of calcium titanate in CaCl2–NaCl molten salt, Int. J. Electrochem. Sci., 17(2022), No. 2, art. No. 220245.

[108]

Lang XC, Xie HW, Zou XY, Kim PH, Zhai YC. Investigation on direct electrolytic Reduction of the CaTiO3 compounds in molten CaCl2–NaCl for the production of Ti. Adv. Mater. Res., 2011, 284–286: 2082.

[109]

Yang F, Liu Y, Ye JW, Wang GR, He W. Preparation of titanium through the electrochemical reducing Ti4O7 in molten calcium chloride. Mater. Lett., 2018, 233: 28.

[110]

Mohanty J, Behera PK. Use of pre-treated TiO2 as cathode material to produce Ti metal through molten salt electrolysis. Trans. Indian Inst. Met., 2019, 72(4): 859.

[111]

Ma TX, Hu MJ, Lai PS, Wen LY, Hu ML. Preparation of titanium metal using titanium suboxides in molten salt. Mater. Trans., 2019, 60(3): 400.

[112]

J.J. Liu, S.L. Li, Z.P. Lv, Y. Fan, J.L. He, and J.X. Song, Electro-desulfurization of metal sulfides in molten salts, Sep. Purif. Technol., 310(2023), art. No. 123109.

[113]

Wu CS, Tan MS, Ye GZ, Fray DJ, Jin XB. High-efficiency preparation of titanium through electrolysis of carbosulfurized titanium dioxide. ACS Sustainable Chem. Eng., 2019, 7(9): 8340.

[114]

Suzuki N, Tanaka M, Noguchi H, Natsui S, Kikuchi T, Suzuki RO. Calcium reduction of TiS2 in CaCl2 melt. Mater. Trans., 2017, 58(3): 367.

[115]

Ohta M, Satoh S, Kuzuya T, Hirai S, Kunii M, Yamamoto A. Thermoelectric properties of Ti1+xS2 prepared by CS2 sulfurization. Acta Mater., 2012, 60(20): 7232.

[116]

Li GM, Wang DH, Jin XB, Chen GZ. Electrolysis of solid MoS2 in molten CaCl2 for Mo extraction without CO2 emission. Electrochem. Commun., 2007, 9(8): 1951.

[117]

Ge XL, Wang XD, Seetharaman S. Copper extraction from copper ore by electro-reduction in molten CaCl2–NaCl. Electrochim. Acta, 2009, 54(18): 4397.

[118]

Wang T, Gao HP, Jin XB, Chen HL, Peng JJ, Chen GZ. Electrolysis of solid metal sulfide to metal and sulfur in molten NaCl–KCl. Electrochem. Commun., 2011, 13(12): 1492.

[119]

Tian DH, Wang MY, Zhou YP, et al. . Ni0.36Al0.10Cu0.30Fe0.24 metallic inert anode for the electrochemical production of Fe–Ni alloy in molten K2CO3–Na2CO3. Metall. Mater. Trans. B, 2018, 49(6): 3424.

[120]

Alzamani M, Jafarzadeh K. The effect of pre-oxidation treatment on corrosion behavior of Ni–Cu–Fe–Al anode in molten CaCl2 salt. Oxid. Met., 2018, 89(5–6): 623.

[121]

Alzamani M, Jafarzadeh K, Fattah-Alhosseini A. EIS study of oxidation heat-treatment effects on corrosion behavior of Ni10Cu11Fe6Al metallic inert anode inside molten calcium chloride salt. Mater. Corros., 2019, 70(4): 605.

[122]

Hu LW, Song Y, Ge JB, Jiao SQ, Cheng J. Electrochemical metallurgy in CaCl2–CaO melts on the basis of TiO2RuO2 inert anode. J. Electrochem. Soc., 2016, 163(3): E33.

[123]

Suput M, Delucas R, Pati S, Ye G, Pal U, Powell ACIV. Solid oxide membrane technology for environmentally sound production of titanium. Miner. Process. Extr. Metall., 2008, 117(2): 118.

[124]

Li SS, Zou XL, Zheng K, et al. . Direct production of TiAl3 from Ti/Al-containing oxides precursors by solid oxide membrane (SOM) process. J. Alloy. Compd., 2017, 727: 1243.

[125]

Lu XG, Zou XL, Li CH, Zhong QD, Ding WZ, Zhou ZF. Green electrochemical process solid-oxide oxygen-ion-conducting membrane (SOM): Direct extraction of Ti–Fe alloys from natural ilmenite. Metall. Mater. Trans. B, 2012, 43(3): 503.

[126]

Ye XS, Lu XG, Li CH, et al. . Preparation of Ti–Fe based hydrogen storage alloy by SOM method. Int. J. Hydrogen Energy, 2011, 36(7): 4573.

[127]

Otake K, Kinoshita H, Kikuchi T, Suzuki RO. CO2 gas decomposition to carbon by electro-reduction in molten salts. Electrochim. Acta, 2013, 100: 293.

[128]

Dring K. Direct electrochemical reduction of titanium dioxide in molten salts. Key Eng. Mater., 2010, 436: 27.

[129]

Okabe TH, Taninouchi YKReddy RG, Chaubal P, Pistorius PC. Recycling titanium and its alloys by utilizing molten salt. Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts 2016, 2016, Cham. Springer751.

[130]

N. Kwon, J.S. Byeon, H.C. Kim, et al., Effective deoxidation process of titanium scrap using MgCl2 molten salt electrolytic, Metals, 11(2021), No. 12, art. No. 1981.

[131]

L.X. Kong, T. Ouchi, and T.H. Okabe, Electrochemical deoxidation of titanium in molten MgCl2–HoCl3, MATEC Web Conf., 321(2020), art. No. 07006.

[132]

Abdulaziz R, Brown LD, Inman D, Simons S, Shearing PR, Brett DJL. Novel fluidised cathode approach for the electrochemical reduction of tungsten oxide in molten LiCl–KCl eutectic. Electrochem. Commun., 2014, 41: 44.

[133]

Zhao K, Gao F. Electrochemical evaluation of titanium production from porous Ti2O3 in LiCl–KCl–Li2O eutectic melt. Int. J. Electrochem. Sci., 2020, 15(7): 6109.

[134]

F.X. Zhu, L. Li, X.Z. Cheng, S.R. Ma, L.W. Jiang, and K.H. Qiu, Direct electrochemical reduction of low titanium chlorides into titanium aluminide alloy powders from molten eutectic KCl–LiCl–MgCl2, Electrochim. Acta, 357(2020), art. No. 136867.

[135]

Chen GS, Okido M, Oki T. Electrochemical studies of the reaction between titanium metal and titanium ions in the KCl–NaCl molten salt system at 973 K. J. Appl. Electrochem., 1987, 17(4): 849.

[136]

M. Dayah, Ptable® is a registered trademark of Michael Dayah, (2022–10–12) [2025–04–25], https://ptable.com/lang=zh-hans#.

[137]

Song JX, Wang QY, Wu JY, Jiao SQ, Zhu HM. The influence of fluoride ions on the equilibrium between titanium ions and titanium metal in fused alkali chloride melts. Faraday Discuss., 2016, 190: 421

[138]

Song JX, Wang QY, Zhu XB, Hou JG, Jiao SQ, Zhu HM. The influence of fluoride anion on the equilibrium between titanium ions and electrodeposition of titanium in molten fluoride–chloride salt. Mater. Trans., 2014, 55(8): 1299.

[139]

Song X, Li SL, Liu SS, Fan Y, He JL, Song JX. Co-ordination states of metal ions in molten salts and their characterization methods. Int. J. Miner. Metall. Mater., 2023, 30(7): 1261.

[140]

Liu SS, Li SL, Liu CH, He JL, Song JX. Effect of fluoride ions on coordination structure of titanium in molten NaCl–KCl. Int. J. Miner. Metall. Mater., 2023, 30(5): 868.

[141]

Lantelme F, Kuroda K, Barhoun A. Electrochemical and thermodynamic properties of titanium chloride solutions in various alkali chloride mixtures. Electrochim. Acta, 1998, 44(2–3): 421.

[142]

Lantelme F, Berghoute Y. Transient electrochemical techniques for studying electrodeposition of niobium in fused NaCl–KCl. J. Electrochem. Soc., 1994, 141(12): 3306.

[143]

Lantelme F, Barhoun A, Kuroda KKerridge DH, Polyakov EG. Role of the oxoacidity and ligand effect in the electrowinning of titanium in fused salts. Refractory Metals in Molten Salts, 1998, Netherlands. Springer159.

[144]

J.J. Peng, G.M. Li, H.L. Chen, D.H. Wang, X.B. Jin, and G.Z. Chen, Cyclic voltammetry of ZrO2 powder in the metallic cavity electrode in molten CaCl2, J. Electrochem. Soc., 157(2010), No. 1, art. No. F1.

[145]

Chen GZ, Gordo E, Fray DJ. Direct electrolytic preparation of chromium powder. Metall. Mater. Trans. B, 2004, 35(2): 223.

[146]

Wang DH, Qiu GH, Jin XB, Hu XH, Chen GZ. Electrochemical metallization of solid terbium oxide. Angew. Chem. Int. Ed., 2006, 45(15): 2384.

[147]

Jiao HD, Wang QY, Ge JB, Sun HB, Jiao SQ. Electrochemical synthesis of Ti5Si3 in CaCl2 melt. J. Alloy. Compd., 2014, 582: 146.

[148]

Zhou ZR, Dong P, Wang DY, et al. . Silicon-titanium nanocomposite synthesized via the direct electrolysis of SiO2/TiO2 precursor in molten salt and their performance as the anode material for lithium ion batteries. J. Alloy. Compd., 2019, 781: 362.

[149]

R. Bhagat, M. Jackson, D. Inman, and R. Dashwood, Production of Ti–W alloys from mixed oxide precursors via the FFC Cambridge process, J. Electrochem. Soc., 156(2009), No. 1, art. No. E1.

[150]

Zhou ZR, Zhang YJ, Dong P, et al. . Electrolytic synthesis of TiC/SiC nanocomposites from high titanium slag in molten salt. Ceram. Int., 2018, 44(4): 3596.

[151]

R. Bhagat, M. Jackson, D. Inman, and R. Dashwood, The production of Ti–Mo alloys from mixed oxide precursors via the FFC Cambridge process, J. Electrochem. Soc., 155(2008), No. 6, art. No. E63.

[152]

Z.Y. Pang, X.L. Zou, S.S. Li, W. Tang, Q. Xu, and X.G. Lu, Molten salt electrochemical synthesis of ternary carbide Ti3AlC2 from titanium-rich slag, Adv. Eng. Mater., 22(2020), No. 5, art. No. 1901300.

[153]

Polyakova LP, Taxil P, Polyakov EG. Electrochemical behaviour and codeposition of titanium and niobium in chloride–fluoride melts. J. Alloy. Compd., 2003, 359(1–2): 244.

[154]

Padhee SP, Chanda UK, Singh R, Roy A, Mishra B, Pati S. Electro-deoxidation process for producing FeTi from low-grade ilmenite: Tailoring precursor composition for hydrogen storage. J. Sustain. Metall., 2021, 7(3): 1178.

[155]

Xiong L, Hua YX, Xu CY, et al. . Effect of CaO addition on preparation of ferrotitanium from ilmenite by electrochemical reduction in CaCl2–NaCl molten salt. J. Alloy. Compd., 2016, 676: 383.

[156]

F. Cardarellir, Electrochemical Deoxidation of Titanium and its Alloy Process, US Patent, 7504017, 2009.

[157]

J.C. Withers and R.O. Loutfy, Thermal and Electrochemical Process for Metal Production, US Patent, 7410562, 2008.

[158]

Withers JC, Loutfy RO, Laughlin JP. Electrolytic process to produce titanium from TiO2 feed. Mater. Technol., 2007, 22(2): 66.

[159]

Bains PS, Bahraminasab M, Sidhu SS, Singh G. On the machinability and properties of Ti–6Al–4V biomaterial with n-HAp powder-mixed ED machining. Proc. Inst. Mech. Eng. H, 2020, 234(2): 232

[160]

Jiao SQ, Zhu HM. Novel metallurgical process for titanium production. J. Mater. Res., 2006, 21(9): 2172.

[161]

Jiao SQ, Zhu HM. Electrolysis of Ti2CO solid solution prepared by TiC and TiO2. J. Alloy. Compd., 2007, 438(1–2): 243.

[162]

Ning XH, Xiao JS, Jiao SQ, Zhu HM. Anodic dissolution of titanium oxycarbide TiCxO1−x with different O/C ratio. J. Electrochem. Soc., 2019, 166(2): E22.

[163]

Ning XH, Liu HY, Zhu HM. Anodic dissolution behavior of TiCxOy in NaCl–KCl melt. Electrochemistry, 2010, 78(6): 513.

[164]

Jiao SQ, Ning XH, Huang K, Zhu HM. Electrochemical dissolution behavior of conductive TiCxO1−x solid solutions. Pure Appl. Chem., 2010, 82(8): 1691.

[165]

Wang QY, Li Y, Jiao SQ, Zhu HM. Producing metallic titanium through electro-refining of titanium nitride anode. Electrochem. Commun., 2013, 35: 135.

[166]

J.X. Wang, Z. Wang, J.G. Tu, J. Zhu, M.Y. Wang, and S.Q. Jiao, Purification of titanium oxycarbonitride by leaching from titanium slag with carbothermal reduction, Hydrometallurgy, 215(2023), art. No. 105984.

[167]

S. Jiao, T. Donghua, and J. Handongr, Preparing Process for Titanium of Ti–C–S Anode by Carbonized/sulfurized Ilmenite, US Patents, 11473207, 2022.

[168]

Weng QG, Li RD, Yuan TC, Li J, He YH. Valence states, impurities and electrocrystallization behaviors during molten salt electrorefining for preparation of high-purity titanium powder from sponge titanium. Trans. Nonferrous Met. Soc. China, 2014, 24(2): 553.

[169]

Ri VE, Yoo BU, Nersisyan H, Lee JH. Carbon-free recovery route for pure Ti: CuTi-alloy electrorefining in a K-free molten salt. ACS Sustainable Chem. Eng., 2023, 11(4): 1414.

[170]

H.D. Jiao, W.L. Song, H.S. Chen, M.Y. Wang, S.Q. Jiao, and D.N. Fang, Sustainable recycling of titanium scraps and purity titanium production via molten salt electrolysis, J. Cleaner Prod., 261(2020), art. No. 121314.

[171]

J.X. Liu, J.C. Liu, D.W. Long, and K. Zhan, Electroplating titanium film on 316L stainless steel in LiCl–KCl–Tix+ (2 < x < 3) molten salts, Nucl. Sci. Tech., 31(2020), No. 5, art. No. 43.

[172]

D.J. Fray and S. Jiaor, Treatment of Titanium Ores, US Patents, 9181604, 2015.

[173]

Long WY, Zou BS, Li H, Fujita T, Li WZ, Gao F. Fabrication of a TiC0.5O0.5 anode using the carbothermal method under a non-vacuum atmosphere and its application in metal titanium electrolysis. J. Mater. Sci. Mater. Electron., 2022, 33(6): 3045.

[174]

C. Haixian and J. Caor, Device and Process for Preparing High-purity Titanium Powder by Continuous Electrolysis, US Patents, 17/422453, 2022.

[175]

Ono K, Suzuki RO. A new concept for producing Ti sponge: Calciothermic reduction. JOM, 2002, 54(2): 59.

[176]

Suzuki RO, Ono K, Teranuma K. Calciothermic reduction of titanium oxide and in-situ electrolysis in molten CaCl2. Metall. Mater. Trans. B, 2003, 34(3): 287.

[177]

Oki T, Inoue H. Reduction of titanium dioxide by calcium in hot cathode spot, Memoirs of the Faculty of Engineering. Nagoya University., 1968, 19(1): 164

[178]

Okabe TH, Nakamura M, Oishi T, Ono K. Electrochemical deoxidation of titanium. Metall. Trans. B, 1993, 24(3): 449.

[179]

Ohno Y, Suzuki H, Yamakawa H, Nakamura M, Otsuka K, Saruta T. Impaired insulin sensitivity in young, lean normotensive offspring of essential hypertensives: Possible role of disturbed calcium metabolism. J. Hypertens., 1993, 11(4): 421

[180]

Ahmadi E, Suzuki RO, Kikuchi T, Kaneko T, Yashima Y. Towards a sustainable technology for production of extra-pure Ti metal: Electrolysis of sulfurized Ti(C,N) in molten CaCl2. Int. J. Miner. Metall. Mater, 2020, 27(12): 1635.

[181]

Suzuki N, Tanaka M, Noguchi H, Natsui S, Kikuchi T, Suzuki RO. Reduction of TiS2 by OS process in CaCl2 melt. ECS Trans., 2016, 75(15): 507.

[182]

Wang D, Pang S, Zhou CY, Peng Y, Wang Z, Gong XZ. Improve titanate reduction by electro-deoxidation of Ca3Ti2O7 precursor in molten CaCl2. Int. J. Miner. Metall. Mater., 2020, 27(12): 1618.

[183]

Tang CC, Yu XJ, Chen JS, Han Q, Liu KR. Preparation of titanium by electrochemical reduction of titanium dioxide powder in molten SrCl2–KCl. J. Alloy. Compd., 2016, 684: 699.

[184]

Park I, Abiko T, Okabe TH. Production of titanium powder directly from TiO2 in CaCl2 through an electronically mediated reaction (EMR). J. Phys. Chem. Solids, 2005, 66(2–4): 410.

[185]

Okabe TH, Waseda Y. Producing titanium through an electronically mediated reaction. JOM, 1997, 49(6): 28.

[186]

Okabe TH. New smelting process of titanium. J. Jpn. Inst. Light Met., 2005, 55(11): 537.

[187]

Okabe TH, Uda T, Kasai E, Waseda Y. Mechanism of magnesiothermic reduction of TiCl4 by an electronically mediated reaction (EMR). Proceedings of the 1997 126th TMS Annual Meeting, 1997

[188]

Uda T, Okabe TH, Waseda Y, Jacob KT. Contactless electrochemical reduction of titanium (II) chloride by aluminum. Metall. Mater. Trans. B, 2000, 31(4): 713.

[189]

Jiao HD, Tian DH, Wang S, Zhu J, Jiao SQ. Direct preparation of titanium alloys from Ti-bearing blast furnace slag. J. Electrochem. Soc., 2017, 164(7): D511.

[190]

Jiao HD, Jiao SQ, Song WL, et al. . Depolarization behavior of Ti deposition at liquid metal cathodes in a NaCl–KCl–KF melt. J. Electrochem. Soc., 2019, 166(13): E401.

[191]

Jiao HD, Wang JX, Tian DH, Jiao SQ. Electrochemical behaviour of K2TiF6 at liquid metal cathodes in the LiF–NaF–KF eutectic melt. Electrochemistry, 2019, 87(3): 142.

[192]

Zhao K, Wang YW, Peng JP, Di YZ, Deng XZ, Feng NX. Electrochemical preparation of titanium and titanium–copper alloys with K2Ti6O13 in KF–KCl melts. Rare Met., 2017, 36(6): 527.

[193]

Gussone J, Vijay CRY, Watermeyer P, Milicevic K, Friedrich B, Haubrich J. Electrodeposition of titanium-vanadium alloys from chloride-based molten salts: Influence of electrolyte chemistry and deposition potential on composition, morphology and microstructure. J. Appl. Electrochem., 2020, 50(3): 355.

[194]

F.X. Zhua, K.H. Li, W.C. Song, L. Li, D.F. Zhang, and K.H. Qiu, Composition and structure of Ti–Al alloy powders formed by electrochemical co-deposition in KCl–LiCl–MgCl2–TiCl3–AlCl3 molten salt, Intermetallics, 139(2021), art. No. 107341.

[195]

Fang ZZ, Paramore JD, Sun P, et al. . Powder metallurgy of titanium-past, present, and future. Int. Mater. Rev., 2018, 63(7): 407.

[196]

Xin YC, Liu Y, Gao L, et al. . The numerical simulation of element segregation control during the electron beam cold hearth melting process of large-sized Ti–6wt%Al–4wt%V titanium alloy slab. J. Mater. Res. Technol., 2025, 36: 8671.

[197]

Zheng HY, Okabe TH. Recovery of titanium metal scrap by utilizing chloride wastes. J. Alloy. Compd., 2008, 461(1–2): 459.

[198]

Moon BM, Hyun S, Lee HJ, Ho J, Hyun P, Jung HD. Method of recycling titanium scraps via the electromagnetic cold crucible technique coupled with calcium treatment. J. Alloy. Compd, 2017, 727: 931.

[199]

Hur BY, Ahn DK, Kim SY, Um YS, Hiroshi A. Hydrogen treatment of Ti scrap. Mater. Sci. Forum, 2003, 439: 143.

[200]

Okabe TH, Hamanaka Y, Taninouchi YK. Direct oxygen removal technique for recycling titanium using molten MgCl2 salt. Faraday Discuss., 2016, 190: 109

[201]

Kong LX, Ouchi T, Zheng CY, Okabe TH. Electrochemical deoxidation of titanium scrap in MgCl2–HoCl3 system. J. Electrochem. Soc., 2019, 166(13): E429.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

/