Aqueous route to α-FAPbI3 microcrystals for efficient perovskite solar cells

Yining Pan , Qiang Zeng , Linhong Li , Mingxin Deng , Xiaoyu Yang , Rongze Zheng , Xiang Liao , Mingjun Zhang , Fangyang Liu

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (9) : 2238 -2248.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (9) : 2238 -2248. DOI: 10.1007/s12613-025-3191-x
Research Article
research-article

Aqueous route to α-FAPbI3 microcrystals for efficient perovskite solar cells

Author information +
History +
PDF

Abstract

Perovskite solar cells (PSCs) based on α-phase FAPbI3 (α-FAPbI3) microcrystals precursor outperform those with δ-phase microcrystals due to their superior crystallinity and fewer defects, making α-phase microcrystals precursor more advantageous for high-performance PSCs. However, most reported synthesis methods of perovskite microcrystals, especially for aqueous synthesis, fail to reach the energy threshold required for α-phase transformation and therefore exhibit the δ phase. In this study, we introduce a novel aqueous synthesis method to fabricate α-FAPbI3 microcrystals. Our approach overcomes the energy barrier by properly heating the reaction system, enabling the direct formation of α-FAPbI3 in water. This direct one-step aqueous synthesis route yields α-FAPbI3 microcrystals with superior phase purity, crystallinity, and minimal defect density. Combined with green anti-solvent, the high-quality α-FAPbI3 microcrystals serving as exceptional precursors endow perovskite films with reduced nonradiative recombination. The PSC achieves a remarkable power conversion efficiency (PCE) of 24.43%, which is one of the highest PCE reports for using the green anti-solvent in ambient air condition. This aqueous synthesis approach shows a significant potential for scalable production of high-performance PSCs.

Keywords

perovskite solar cells / formamidinium lead iodide / aqueous-phase synthesis / thin-film deposition / photovoltaic

Cite this article

Download citation ▾
Yining Pan, Qiang Zeng, Linhong Li, Mingxin Deng, Xiaoyu Yang, Rongze Zheng, Xiang Liao, Mingjun Zhang, Fangyang Liu. Aqueous route to α-FAPbI3 microcrystals for efficient perovskite solar cells. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(9): 2238-2248 DOI:10.1007/s12613-025-3191-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

EperonGE, StranksSD, MenelaouC, JohnstonMB, HerzLM, SnaithHJ. Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci., 2014, 73982.

[2]

LinR, XuJ, WeiM, et al.. All-perovskite tandem solar cells with improved grain surface passivation. Nature, 2022, 603789973.

[3]

ZhaoX, GaoNT, WuSC, LiSZ, WuSJ. Enhancing performance of low-temperature processed CsPbI2Br all-inorganic perovskite solar cells using polyethylene oxide-modified TiO2. Int. J. Miner. Metall. Mater., 2024, 314786.

[4]

GreenMA, DunlopED, YoshitaM, et al.. Solar cell efficiency tables (Version 64). Prog. Photovolt. Res. Appl., 2024, 327425.

[5]

Q. Zeng, H.R. Xiao, Q.M. Ma, et al., Highly layer-oriented PbI2 films enabling all-air processed perovskite solar cells, Adv. Energy Mater., 14(2024), No. 32, art. No. 2401279.

[6]

G.Q. Tong, D.Y. Son, L.K. Ono, et al., Removal of residual compositions by powder engineering for high efficiency form-amidinium-based perovskite solar cells with operation lifetime over 2000 h, Nano Energy, 87(2021), art. No. 106152.

[7]

KernerRA, ChristensenED, HarveySP, et al.. Analytical evaluation of lead iodide precursor impurities affecting halide perovskite device performance. ACS Appl. Energy Mater., 2023, 61295.

[8]

Y.Z. Zhang, Y.J. Wang, X.Y. Yang, et al., Mechanochemistry advances high-performance perovskite solar cells, Adv. Mater., 34(2022), No. 6, art. No. 2107420.

[9]

W.L. Fan, K.M. Deng, Y. Shen, Y. Bai, and L. Li, Moisture-accelerated precursor crystallisation in ambient air for high-performance perovskite solar cells toward mass production, Angew. Chem. Int. Ed., 61(2022), No. 42, art. No. e202211259.

[10]

ZhangY, KimSG, LeeDK, ParkNG. CH3NH3PbI3 and HC(NH2)2PbI3 powders synthesized from low-grade PbI2: Single precursor for high-efficiency perovskite solar cells. ChemSusChem, 2018, 11111813.

[11]

O. Nazarenko, S. Yakunin, V. Morad, I. Cherniukh, and M.V. Kovalenko, Single crystals of caesium formamidinium lead halide perovskites: Solution growth and gamma dosimetry, NPG Asia Mater., 9(2017), No. 4, art. No. e373.

[12]

JeongJ, KimM, SeoJ, et al.. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 5927854381.

[13]

ZhangY, SeoS, LimSY, et al.. Achieving reproducible and high-efficiency (>21%) perovskite solar cells with a presynthesized FAPbI3 powder. ACS Energy Lett., 2020, 52360.

[14]

Y.X. Wang, Z.J. Shi, Y.Y. Wang, et al., Intermediate phase free α-FAPbI3 perovskite via green solvent assisted perovskite single crystal redissolution strategy, Adv. Mater., 35(2023), No. 46, art. No. 2302298.

[15]

MinH, JiSG, SeokSI. Relaxation of externally strained halide perovskite thin layers with neutral ligands. Joule, 2022, 692175.

[16]

ParkJ, KimJ, YunHS, et al.. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature, 2023, 6167958724.

[17]

HarisMPU, KazimS, AhmadS. Microstrain and urbach energy relaxation in FAPbI3-based solar cells through powder engineering and perfluoroalkyl phosphate ionic liquid additives. ACS Appl. Mater. Interfaces, 2022, 142124546.

[18]

T.N. Mandal, J.H. Heo, S.H. Im, and W.S. Kim, Green method to prepare pure δ-FAPbI3 crystals for fabrication of highly efficient perovskite solar cells, Sol. RRL, 7(2023), No. 21, art. No. 2300496.

[19]

AskarAM, KarmakarA, BernardGM, et al.. Composition-tunable formamidinium lead mixed halide perovskites via solvent-free mechanochemical synthesis: Decoding the Pb environments using solid-state NMR spectroscopy. J. Phys. Chem. Lett., 2018, 9102671.

[20]

DimessoL, QuintillaA, KimYM, LemmerU, JaegermannW. Investigation of formamidinium and guanidinium lead tri-iodide powders as precursors for solar cells. Mater. Sci. Eng. B, 2016, 20427.

[21]

ZhuP, WangD, ZhangY, et al.. Aqueous synthesis of perovskite precursors for highly efficient perovskite solar cells. Science, 2024, 3836682524.

[22]

PanYN, WangYH, DengMX, et al.. Aqueously synthesized δ-phase FAPbI3 for efficient perovskite solar cells. Sci. China Mater., 2024, 6751621.

[23]

JanaA, BaQK, NissimagoudarAS, KimKS. Formation of a photoactive quasi-2D formamidinium lead iodide perovskite in water. J. Mater. Chem. A, 2019, 74525785.

[24]

M. Wang, H.X. Sun, L.X. Meng, M. Wang, and L. Li, A universal strategy of intermolecular exchange to stabilize α-FAPbI3 and manage crystal orientation for high-performance humid-air-processed perovskite solar cells, Adv. Mater., 34(2022), No. 23, art. No. 2200041.

[25]

XieLS, ZengQ, LiQY, et al.. A green lead recycling strategy from used lead acid batteries for efficient inverted perovskite solar cells. J. Phys. Chem. Lett., 2021, 12399595.

[26]

YadavalliSK, DaiZH, HuMY, et al.. Mechanisms of exceptional grain growth and stability in formamidinium lead triiodide thin films for perovskite solar cells. Acta Mater., 2020, 19310.

[27]

T. Chen, B.J. Foley, C. Park, et al., Entropy-driven structural transition and kinetic trapping in formamidinium lead iodide perovskite, Sci. Adv., 2(2016), No. 10, art. No. e1601650.

[28]

ZhaoX, ZhongSD, WangSQ, LiSZ, WuSJ. Potassium thiocyanate additive for PEDOT:PSS layer to fabricate efficient tin-based perovskite solar cells. Int. J. Miner. Metall. Mater., 2023, 30122451.

[29]

MinH, KimM, LeeSU, et al.. Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide. Science, 2019, 3666466749.

[30]

L. Ma, Z.G. Yan, X.Y. Zhou, et al., A polymer controlled nucleation route towards the generalized growth of organic-inorganic perovskite single crystals, Nat. Commun., 12(2021), No. 1, art. No. 2023.

[31]

X.M. Zhuang, D.L. Zhou, S.N. Liu, et al., Trivalent europium-doped CsCl quantum dots for MA-free perovskite solar cells with inherent bandgap through lattice strain compensation, Adv. Mater., 35(2023), No. 40, art. No. 2302393.

[32]

JiangQ, ZhaoY, ZhangXW, et al.. Surface passivation of perovskite film for efficient solar cells. Nat. Photonics, 2019, 137460.

[33]

C.Q. Yang, R. Zhi, M.U. Rothmann, et al., Unveiling the intrinsic structure and intragrain defects of organic–inorganic hybrid perovskites by ultralow dose transmission electron microscopy, Adv. Mater., 35(2023), No. 17, art. No. 2211207.

[34]

M.C. Qin, P.F. Chan, and X.H. Lu, A systematic review of metal halide perovskite crystallization and film formation mechanism unveiled by in situ GIWAXS, Adv. Mater., 33(2021), No. 51, art. No. 2105290.

[35]

D. Liang, C. Dong, L. Cai, et al., Unveiling crystal orientation in quasi-2D perovskite films by in situ GIWAXS for high-performance photovoltaics, Small, 17(2021), No. 33, art. No. 2100972.

[36]

RogersJT, SchmidtK, ToneyMF, BazanGC, KramerEJ. Time-resolved structural evolution of additive-processed bulk heterojunction solar cells. J. Am. Chem. Soc., 2012, 13462884.

[37]

LiG, ZhangTY, XuF, ZhaoYX. A facile deposition of large grain and phase pure α-FAPbI3 for perovskite solar cells via a flash crystallization. Mater. Today Energy, 2017, 5293.

[38]

XieFX, ChenCC, WuYZ, et al.. Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells. Energy Environ. Sci., 2017, 1091942.

[39]

LiuD, LuoD, IqbalAN, et al.. Strain analysis and engineering in halide perovskite photovoltaics. Nat. Mater., 2021, 20101337.

[40]

ChenR, WangJN, LiuZH, et al.. Reduction of bulk and surface defects in inverted methylammonium- and bromide-free formamidinium perovskite solar cells. Nat. Energy, 2023, 88839.

[41]

T. Du, T.J. MacDonald, R.X. Yang, et al., Additive-free, low-temperature crystallization of stable α-FAPbI3 perovskite, Adv. Mater., 34(2022), No. 9, art. No. 2107850.

[42]

ChenQ, ZhouHP, SongTB, et al.. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett., 2014, 1474158.

[43]

LeeJ, ShinYS, OleikiE, et al.. Constructing orderly crystal orientation with a bidirectional coordinator for high efficiency and stable perovskite solar cells. Energy Environ. Sci., 2024, 17166003.

[44]

G.T. Ulzii, C.J. Qin, D. Klotz, et al., Detrimental effect of unreacted PbI2 on the long-term stability of perovskite solar cells, Adv. Mater., 32(2020), No. 16, art. No. 1905035.

[45]

ChoH, JeongSH, ParkMH, et al.. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 35062651222.

[46]

WangSY, TanLG, ZhouJJ, et al.. Over 24% efficient MA-free CsxFA1−xPbX3 perovskite solar cells. Joule, 2022, 661344.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

62

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/