Cu/Ti-doped O3-type cathode materials for high cyclic stability of sodium-ion batteries

Jingjing Dong , Liu Pei , Yifei Wang , Yan Liu , Xingliang Liu , Zhidan Diao , Jianling Li , Yejing Li , Xindong Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2026, Vol. 33 ›› Issue (1) : 306 -314.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2026, Vol. 33 ›› Issue (1) :306 -314. DOI: 10.1007/s12613-025-3180-0
Research Article
research-article

Cu/Ti-doped O3-type cathode materials for high cyclic stability of sodium-ion batteries

Author information +
History +
PDF

Abstract

The outstanding performance of O3-type NaNi1/3Fe1/3Mn1/3O2 (NFM111) at both high and low temperatures coupled with its impressive specific capacity makes it an excellent cathode material for sodium-ion batteries. However, its poor cycling, owing to high-pressure phase transitions, is one of its disadvantages. In this study, Cu/Ti was introduced into NFM111 cathode material using a solid-phase method. Through both theoretically and experimentally, this study found that Cu doping provides a higher redox potential in NFM111, improving its reversible capacity and charge compensation process. The introduction of Ti would enhance the cycling stability of the material, smooth its charge and discharge curves, and suppress its high-voltage phase transitions. Accordingly, the NaNi0.27Fe0.28Mn0.33Cu0.05Ti0.06O2 sample used in the study exhibited a remarkable rate performance of 142.97 mAh·g−1 at 0.1C (2.0–4.2 V) and an excellent capacity retention of 72.81% after 300 cycles at 1C (1C = 150 mA·g−1).

Keywords

sodium-ion batteries / Cu/Ti doping / cyclic stability / layered cathode material

Cite this article

Download citation ▾
Jingjing Dong, Liu Pei, Yifei Wang, Yan Liu, Xingliang Liu, Zhidan Diao, Jianling Li, Yejing Li, Xindong Wang. Cu/Ti-doped O3-type cathode materials for high cyclic stability of sodium-ion batteries. International Journal of Minerals, Metallurgy, and Materials, 2026, 33(1): 306-314 DOI:10.1007/s12613-025-3180-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J.Q. Deng, W.B. Luo, S.L. Chou, H.K. Liu, and S.X. Dou, Sodium-ion batteries: From academic research to practical commercialization, Adv. Energy Mater., 8(2018), No. 4, art. No. 1701428.

[2]

Ma XH, Chen ZJ, Zhang TW, et al. . Efficient utilization of glass fiber separator for low-cost sodium-ion batteries. Int. J. Miner. Metall. Mater., 2023, 30(10): 1878.

[3]

Tian YS, Zeng GB, Rutt A, et al. . Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev., 2021, 121(3): 1623.

[4]

Usiskin R, Lu Y X, Popovic J, et al. . Fundamentals, status and promise of sodium-based batteries. Nat. Rev. Mater., 2021, 6(11): 1020.

[5]

Wu JP, Tian JH, Sun XY, Zhuang WD. Cycling performance of layered oxide cathode materials for sodium-ion batteries. Int. J. Miner. Metall. Mater., 2024, 31(7): 1720.

[6]

X.X. Cao, J. Zhou, A.Q. Pan, and S.Q. Liang, Recent advances in phosphate cathode materials for sodium-ion batteries, Acta Phys. Chim. Sin., 36(2020), No. 5, art. No. 1905018.

[7]

M.Z. Chen, Q.N. Liu, S.W. Wang, E.H. Wang, X.D. Guo, and S.L. Chou, High-abundance and low-cost metal-based cathode materials for sodium-ion batteries: Problems, progress, and key technologies, Adv. Energy Mater., 9(2019), No. 14, art. No. 1803609.

[8]

Li YM, Lu YX, Zhao CL, et al. . Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater., 2017, 7: 130.

[9]

Liu YK, Li J, Shen QY, et al. . Advanced characterizations and measurements for sodium-ion batteries with NASICON-type cathode materials. eScience, 2022, 2(1): 10.

[10]

Q. Ni, Y. Bai, F. Wu, and C. Wu, Polyanion-type electrode materials for sodium-ion batteries, Adv. Sci., 4(2017), No. 3, art. No. 1600275.

[11]

S.Q. Sun, S.B. Liu, Y.J. Chen, et al., Quantum physics and deep learning to reveal multiple dimensional modified regulation by ternary substitution of iron, manganese, and cobalt on Na3V2(PO4)3 for superior sodium storage, Adv. Funct. Mater., 33(2023), No. 21, art. No. 2213711.

[12]

W.L. Wang, Y. Gang, Z. Hu, et al., Reversible structural evolution of sodium-rich rhombohedral Prussian blue for sodium-ion batteries, Nat. Commun., 11(2020), No. 1, art. No. 980.

[13]

Wang XC, Shang ZF, Yang AK, et al. . Combining quinone cathode and ionic liquid electrolyte for organic sodium-ion batteries. Chem, 2019, 5(2): 364.

[14]

T.W. Yu, G.H. Li, Y. Duan, et al., The research and industrialization progress and prospects of sodium ion battery, J. Alloy. Compd., 958(2023), art. No. 170486.

[15]

X.G. Yuan, Y.J. Guo, L. Gan, et al., A universal strategy toward air-stable and high-rate O3 layered oxide cathodes for Na-ion batteries, Adv. Funct. Mater., 32(2022), No. 17, art. No. 2111466.

[16]

Zhao CL, Wang QD, Yao ZP, et al. . Rational design of layered oxide materials for sodium-ion batteries. Science, 2020, 370(6517): 708.

[17]

Liu QN, Hu Z, Li WJ, et al. . Sodium transition metal oxides: The preferred cathode choice for future sodium-ion batteries?. Energy Environ. Sci., 2021, 14(1): 158.

[18]

Hilder M, Howlett PC, Saurel D, et al. . Small quaternary alkyl phosphonium bis(fluorosulfonyl)imide ionic liquid electrolytes for sodium-ion batteries with P2- and O3-Na2/3[Fe2/3Mn1/3]O2 cathode material. J. Power Sources, 2017, 349: 45.

[19]

X.H. Liang and Y.K. Sun, A novel pentanary metal oxide cathode with P2/O3 biphasic structure for high-performance sodium-ion batteries, Adv. Funct. Mater., 32(2022), No. 44, art. No. 2206154.

[20]

Seo DH, Lee J, Urban A, Malik R, Kang S, Ceder G. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem., 2016, 8(7): 692.

[21]

Sun Y, Guo SH, Zhou HS. Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy Environ. Sci., 2019, 12(3): 825.

[22]

H. Yao, H.Y. Li, B.Y. Ke, S.Y. Chu, S.H. Guo, and H.S. Zhou, Recent progress on honeycomb layered oxides as a durable cathode material for sodium-ion batteries, Small Meth., 7(2023), No. 6, art. No. 2201555.

[23]

Y. Yoda, K. Kubota, K. Kuroki, et al., Elucidating influence of Mg- and Cu-doping on electrochemical properties of O3-Nax[Fe,Mn]O2 for Na-ion batteries, Small, 16(2020), No. 50, art. No. 2006483.

[24]

Yu Y, Ning D, Li QY, et al. . Revealing the anionic redox chemistry in O3-type layered oxide cathode for sodium-ion batteries. Energy Storage Mater., 2021, 38: 130.

[25]

Z.W. Chen, M.L. Yang, G.J. Chen, et al., Triggering anionic redox activity in Fe/Mn-based layered oxide for high-performance sodium-ion batteries, Nano Energy, 94(2022), art. No. 106958.

[26]

H. Guo, M. Avdeev, K. Sun, et al., Pentanary transition-metals Na-ion layered oxide cathode with highly reversible O3–P3 phase transition, Chem. Eng. J., 412(2021), art. No. 128704.

[27]

H.X. Ren, Y. Li, Q. Ni, Y. Bai, H.C. Zhao, and C. Wu, Unraveling anionic redox for sodium layered oxide cathodes: Break-throughs and perspectives, Adv. Mater., 34(2022), No. 8, art. No. 2106171.

[28]

K. Wang, W.B. Hua, X.H. Huang, et al., Synergy of cations in high entropy oxide lithium ion battery anode, Nat. Commun., 14(2023), art. No. 1487.

[29]

Peng CX, Liu J. Research progress of layered transition metal oxides cathode materials for sodium-ion batteries. Inorg. Chem. Ind., 2023, 55(10): 1

[30]

Y.M. Li, Z.Z. Yang, S.Y. Xu, et al., Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries, Adv. Sci., 2(2015), No. 6, art. No. 1500031.

[31]

Ding FX, Zhao CL, Zhou D, et al. . A novel Ni-rich O3-Na[Ni0.60Fe0.25Mn0.15]O2 cathode for Na-ion batteries. Energy Storage Mater., 2020, 30: 420.

[32]

J.L. Xu, J.Z. Chen, K. Zhang, N.N. Li, L. Tao, and C.P. Wong, Nax(Cu–Fe–Mn)O2 system as cathode materials for Na-ion batteries, Nano Energy, 78(2020), art. No. 105142.

[33]

Liu GL, Xu WL, Wu JH, et al. . Unlocking high-rate O3 layered oxide cathode for Na-ion batteries via ion migration path modulation. J. Energy Chem., 2023, 83: 53.

[34]

X.B. Song, R.N. Liu, J.T. Jin, et al., Unraveling the functioning mechanism of fluorine-doping in Mn-based layered oxide cathodes toward enhanced sodium-ion storage performance, Energy Storage Mater., 69(2024), art. No. 103377.

[35]

D.R. Yang, Y.T. Long, X.W. Gao, et al., Single crystal sodium layered oxide achieves superior cyclability at high voltage, Adv. Energy Mater., 15(2025), No. 13, art. No. 2404999.

[36]

Y.X. Chang, X.H. Liu, Z.Y. Xie, et al., Manipulating thermodynamics and crystal structure modulates P2/O3 biphasic layered oxide cathodes for sodium-ion batteries, Energy Storage Mater., 74(2025), art. No. 103972.

[37]

Han XZ, Li XM, Chai RY, Wang S, Yuan YF, Li YS. Trace Mg2+ doping enhances structural stability of single-crystal layered oxides for sodium-ion batteries. Prog. Nat. Sci. Mater. Int., 2025, 35(3): 533.

[38]

L.P. Huang, J.T. Zhu, J.X. Liu, H.Z. Wu, and G.J. Zhang, High entropy stabilized O3-type NaNi0.3Fe0.2Mn0.2Ti0.15Sn0.15O2 cathode material for sodium-ion batteries, Chem. Eng. J., 507(2025), art. No. 160309.

[39]

Peng B, Chen YX, Zhao LP, et al. . Regulating the local chemical environment in layered O3-NaNi0.5Mn0.5O2 achieves practicable cathode for sodium-ion batteries. Energy Storage Mater., 2023, 56: 631.

[40]

Z.Q. Wang, L. Fang, X.G. Fu, et al., A Ni/Co-free high-entropy layered cathode with suppressed phase transition and near-zero strain for high-voltage sodium-ion batteries, Chem. Eng. J., 480(2024), art. No. 148130.

[41]

Wei SB, He YJ, Tang Y, et al. . A Ca-substituted air-stable layered oxide cathode material with facilitated phase transitions for high-performance Na-ion batteries. Rare Met., 2024, 43(11): 5701.

[42]

W. Zhou, S.H. Li, R. Jin, et al., Surface structure reconstruction to suppress heterogeneous phase transformation for air-stable single crystalline O3-type sodium oxide, Energy Storage Mater., 74(2025), art. No. 103881.

[43]

Asl HY, Manthiram A. Reining in dissolved transition-metal ions. Science, 2020, 369(6500): 140.

[44]

Yaghoobnejad Asl H, Manthiram A. Proton-induced disproportionation of Jahn–Teller-active transition-metal ions in oxides due to electronically driven lattice instability. J. Am. Chem. Soc., 2020, 142(50): 21122.

[45]

Liu HQ, Gao X, Chen J, et al. . Cu-substitution P2-Na0.66Mn1−xCuxO2 sodium-ion cathode with enhanced interlayer stability. J. Energy Chem., 2022, 75: 478.

[46]

X. Wang, X.P. Dong, X.C. Feng, et al., In-plane BO3 configuration in P2 layered oxide enables outstanding long cycle performance for sodium ion batteries, Small Methods, 7(2023), No. 1, art. No. e2201201.

[47]

Zhang GH, Li JY, Fan YX, et al. . Suppressed P2–P2′ phase transition of Fe/Mn-based layered oxide cathode for high-performance sodium-ion batteries. Energy Storage Mater., 2022, 51: 559.

[48]

Fang D, Feng JM, Li J, Li JL. Using highly electronegative Zn to regulate the superlattice structure for the Na-ion layered oxide cathode with superior electrochemical performance. ACS Appl. Mater. Interfaces, 2023, 15(48): 55633.

[49]

J.M. Feng, Y. Liu, D. Fang, and J.L. Li, Reusing the steel slag to design a gradient-doped high-entropy oxide for high-performance sodium ion batteries, Nano Energy, 118(2023), art. No. 109030.

[50]

N.Y. Hong, J.W. Li, H.J. Wang, et al., Regulating phase transition and restraining Fe distortion at high potential window via rare earth metal incorporation on O3-type layered cathodes, Adv. Funct. Mater., 34(2024), No. 37, art. No. 2402398.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

/