An environmentally friendly synthesis route: Low-temperature preparation of vacancy-ordered double perovskites Cs2SnX6 (X = Cl, Br, I) via ionic liquid

Yuxin Huang , Yibo Cui , Qipeng Lu , Xin Liu , Lijie Zhu

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (10) : 2572 -2578.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (10) : 2572 -2578. DOI: 10.1007/s12613-025-3177-8
Research Article
research-article

An environmentally friendly synthesis route: Low-temperature preparation of vacancy-ordered double perovskites Cs2SnX6 (X = Cl, Br, I) via ionic liquid

Author information +
History +
PDF

Abstract

Lead-free vacancy-ordered double perovskites have emerged as promising materials for optoelectronic applications due to their environmentally friendly characteristics and exceptional properties. However, conventional synthesis methods often depend on toxic reagents and stringent conditions, limiting their large-scale synthesis and practical application. In this work, an environmentally friendly synthesis route was proposed for preparing vacancy-ordered double perovskites Cs2SnX6 (X = Cl, Br, and I) with high crystallinity under low-temperature and ambient-pressure conditions. This method utilizes ion liquid (i.e., 1-butyl-3-methylimidazolium chloride ([Bmim]Cl), 1-butyl-3-methylimidazolium bromide ([Bmim]Br) and 1-butyl-3-methylimidazolium iodide ([Bmim]I)) in combination with saturated aqueous solutions of ammonium halides as solvents, replacing traditional hydrogen halide acid or polar organic solvents. Experimental and characterization results demonstrate that the Cs2SnX6 (X = Cl, Br, and I) possess high crystallinity, well-defined morphology, and improved thermal stability. These improvements are attributed to the hydrogen bonding interactions between ionic liquids and the perovskite precursors. Additionally, the halogen-rich environment provided by ionic liquids and ammonium halide salts facilitates defect passivation. Furthermore, this method is applicable to the synthesis of doped perovskite crystals, demonstrated by the successful synthesis of Bi-doped Cs2SnCl6 crystals with a photoluminescence quantum efficiency of 12.73%. This study presents a novel strategy for synthesizing high-quality vacancy-ordered double perovskites and their doping or alloyed compounds.

Keywords

perovskite / vacancy-ordered double perovskites / lead-free / low temperature / ionic liquids / green synthesis

Cite this article

Download citation ▾
Yuxin Huang, Yibo Cui, Qipeng Lu, Xin Liu, Lijie Zhu. An environmentally friendly synthesis route: Low-temperature preparation of vacancy-ordered double perovskites Cs2SnX6 (X = Cl, Br, I) via ionic liquid. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(10): 2572-2578 DOI:10.1007/s12613-025-3177-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L.X. Zhang, L.Y. Mei, K.Y. Wang, et al., Advances in the application of perovskite materials, Nano Micro Lett., 15(2023), No. 1, art. No. 177.

[2]

Zhang AR, Zhou XQ, Gu RR, Xia ZG. Efficient energy transfer from self-trapped excitons to Mn2+ dopants in CsCdCl3:Mn2+ perovskite nanocrystals. Int. J. Miner. Metall. Mater., 2024, 31(6): 1456.

[3]

Chen P, Xiao Y, Li SD. et al.. The promise and challenges of inverted perovskite solar cells. Chem. Rev., 2024, 124(19): 10623.

[4]

Zhao X, Gao NT, Wu SC, Li SZ, Wu SJ. Enhancing performance of low-temperature processed CsPbI2Br all-inorganic perovskite solar cells using polyethylene oxide-modified TiO2. Int. J. Miner. Metall. Mater., 2024, 31(4): 786.

[5]

A.J. Ramadan, W.H. Jeong, R.D.J. Oliver, et al., The role of the organic cation in developing efficient green perovskite LEDs based on quasi-2D perovskite heterostructures, Adv. Funct. Mater., 34(2024), No.14, art. No. 2309653.

[6]

J. Moon, Y. Mehta, K. Gundogdu, F. So, and Q. Gu, Metal-halide perovskite lasers: Cavity formation and emission characteristics, Adv. Mater., 36(2024), No.20, art. No. 2211284.

[7]

Tang YM, Pu GQ, Tang YF, Sun TM, Wang MM, Wang JC. Recent advances in fast-decaying metal halide perovskites scintillators. J. Phys. Chem. Lett., 2024, 15(27): 7036.

[8]

Yang XR, Sheng YH, Zhang LL. et al.. Five-level anticounterfeiting based on versatile luminescence of tri-doped double perovskites. Nano Res., 2024, 17(11): 9971.

[9]

D.J. Liu, P.P. Dang, G.D. Zhang, H.Z. Lian, G.G. Li, and J. Lin, Near-infrared emitting metal halide materials: Luminescence design and applications, InfoMat, 6(2024), No. 5, art. No. e12542.

[10]

Kim BJ, Choi H, Park S, Johansson MB, Boschloo G, Kim MC. Eco-friendly all-layer green solvent efficient perovskite solar cells. ACS Sustainable Chem. Eng., 2024, 12(35): 13371.

[11]

P.C. Zhu, C.L. Chen, J.Q. Dai, et al., Toward the commercialization of perovskite solar modules, Adv. Mater., 36(2024), No. 15, art. No. 2307357.

[12]

Abzieher T, Moore DT, Roß M. et al.. Vapor phase deposition of perovskite photovoltaics: Short track to commercialization?. Energy Environ. Sci., 2024, 17(5): 1645.

[13]

J.D. Lin, S.X. Chen, W.C. Ye, et al., Ultra-stable yellow monolithic perovskite quantum dots film for backlit display, Adv. Funct. Mater., 34(2024), No. 27, art. No. 2314795.

[14]

Wu XG, Ji HL, Yan XL, Zhong HZ. Industry outlook of perovskite quantum dots for display applications. Nat. Nanotechnol., 2022, 17(8): 813.

[15]

J. Zhou, Y. Gao, Y.Y. Pan, et al., Recent advances in the combined elevated temperature, humidity, and light stability of perovskite solar cells, Sol. RRL, 6(2022), No. 12, art. No. 2200772.

[16]

Zhang HY, Li R, Liu WW, Zhang M, Guo M. Research progress in lead-less or lead-free three-dimensional perovskite absorber materials for solar cells. Int. J. Miner. Metall. Mater., 2019, 26(4): 387.

[17]

T.H. Chowdhury, Y. Reo, A.R.B.M. Yusoff, and Y.Y. Noh, Sn-based perovskite halides for electronic devices, Adv. Sci., 9(2022), No. 33, art. No. 2203749.

[18]

Zhao X, Zhong SD, Wang SQ, Li SZ, Wu SJ. Potassium thiocyanate additive for PEDOT:PSS layer to fabricate efficient tin-based perovskite solar cells. Int. J. Miner. Metall. Mater., 2023, 30(12): 2451.

[19]

Y.M. Tang, M.X. Deng, Z.Z. Zhou, C.B. Kang, J.C. Wang, and Q. Liu, Recent advances in lead-free Cs2ZrCl6 metal halide perovskites and their derivatives: From fundamentals to advanced applications, Coord. Chem. Rev., 499(2024), art. No. 215490.

[20]

Li X, Zhang P, Hua YQ. et al.. Ultralow detection limit and robust hard X-ray imaging detector based on inch-sized lead-free perovskite Cs3Bi2Br9 single crystals. ACS Appl. Mater. Interfaces, 2022, 14(7): 9340.

[21]

Hu XD, Yan P, Ran P. et al.. In situ fabrication of Cs3Cu2I5: Tl nanocrystal films for high-resolution and ultrastable X-ray imaging. J. Phys. Chem. Lett., 2022, 13(13): 2862.

[22]

Arfin H, Nag A. Origin of luminescence in Sb3+- and Bi3+-doped Cs2SnCl6 perovskites: Excited state relaxation and spin-orbit coupling. J. Phys. Chem. Lett., 2021, 12(41): 10002.

[23]

Z.R. Gao, X. Shen, P.B. Lyu, C.F. Xu, D. Fan, and L.Z. Sun, Introducing relatively isolated in/out-gap bands in Cs2XCl6 (X = Sn, Hf, Zr, Ti) via B-site substitution: A route to brighter luminescence and tunable emission wavelengths, Adv. Opt. Mater., 11(2023), No. 21, art. No. 2300956.

[24]

Jin MY, Zheng W, Gong ZL. et al.. Unraveling the triplet excited-state dynamics of Bi3+ in vacancy-ordered double perovskite Cs2SnCl6 nanocrystals. Nano Res., 2022, 15(7): 6422.

[25]

M.Y. Cao, Z.L. Li, X.J. Zhao, and X. Gong, Achieving ultrahigh efficiency vacancy-ordered double perovskite microcrystals via ionic liquids, Small, 18(2022), No. 44, art. No. 2204198.

[26]

Cao MY, Zhao XJ, Gong X. Rapid and large-scale preparation of stable and efficient white light emissive perovskite microcrystals using ionic liquids. J. Phys. Chem. Lett., 2022, 13(26): 6048.

[27]

S.K. Singh and A.W. Savoy, Ionic liquids synthesis and applications: An overview, J. Mol. Liq., 297(2020), art. No. 112038..

[28]

S. Kumar, S. Jain, M. Nehra, N. Dilbaghi, G. Marrazza, and K.H. Kim, Green synthesis of metal-organic frameworks: A state-of-the-art review of potential environmental and medical applications, Coord. Chem. Rev., 420(2020), art. No. 213407.

[29]

Yang J, Hu JF, Zhang WH, Han HW, Chen YH, Hu Y. The opportunities and challenges of ionic liquids in perovskite solar cells. J. Energy Chem., 2023, 77: 157.

[30]

Chao LF, Niu TT, Xia YD, Chen YH, Huang W. Ionic liquid for perovskite solar cells: An emerging solvent engineering technology. Acc. Mater. Res., 2021, 2(11): 1059.

[31]

Y.Q. Zou, J. Eichhorn, S. Rieger, et al., Ionic liquids tailoring crystal orientation and electronic properties for stable perovskite solar cells, Nano Energy, 112(2023), art. No. 108449.

[32]

Z. Gao, H. Zhou, K.L. Dong, et al., Defect passivation on lead-free CsSnI3 perovskite nanowires enables high-performance photodetectors with ultra-high stability, Nano Micro Lett., 14(2022), No. 1, art. No. 215.

[33]

F. Wang, D.W. Duan, Y.G. Sun, et al., Uncovering chemical structure-dependency of ionic liquids as additives for efficient and durable perovskite photovoltaics, Nano Energy, 125(2024), art. No. 109549.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/