Synthesis diamond films on high entropy alloys by chemical vapor deposition: Microstructure, growth behavior and corrosion

Wenchao Xu , Yongsheng Wang , Xiaoqin Yang , Zhen Zeng , Jianwei Wang , Naixu Wang , Sifan Chen , Dariusz M. Jarząbek , Shengwang Yu

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (10) : 2560 -2571.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (10) : 2560 -2571. DOI: 10.1007/s12613-025-3167-x
Research Article
research-article

Synthesis diamond films on high entropy alloys by chemical vapor deposition: Microstructure, growth behavior and corrosion

Author information +
History +
PDF

Abstract

The heteroepitaxy of diamond films has received widespread attention; however, its application remains limited owing to the mismatch in properties and structure between diamond and heterogeneous substrates. In this study, diamond films were successfully synthesized on high-entropy alloys (HEAs) substrates using microwave plasma chemical vapor deposition. The resulting diamond films were continuous, uniform, and adhered to the HEAs substrates. The mixed carbides were identified using X-ray diffraction, and the quality of the diamond films was examined using Raman spectroscopy. Moreover, the corrosion test revealed that the diamond/TiZrHfMo samples had excellent electrochemical stability and corrosion resistance with a corrosion potential value of −0.169 V in a 3.5wt% NaCl solution. A multiple regression model was established to evaluate the effects of the structure and growth parameters, which confirmed that the mixing entropy significantly affected the grain size and corrosion properties.

Keywords

high-entropy alloy / chemical vapor deposition / diamond film / multiple regression model

Cite this article

Download citation ▾
Wenchao Xu, Yongsheng Wang, Xiaoqin Yang, Zhen Zeng, Jianwei Wang, Naixu Wang, Sifan Chen, Dariusz M. Jarząbek, Shengwang Yu. Synthesis diamond films on high entropy alloys by chemical vapor deposition: Microstructure, growth behavior and corrosion. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(10): 2560-2571 DOI:10.1007/s12613-025-3167-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M.D. Zhang and H.Q. Xu, Controllability and mechanism investigation on the subsurface damage of CVD diamond film by Fe-containing vitrified bond wheel, Tribol. Int., 155(2021), art. No. 106774.

[2]

H.H. Wu, Z.L. Zhang, L.W. Sang, et al., Precise characterization of atomic-scale corrosion of single crystal diamond in H2 plasma based on MEMS/NEMS, Corros. Sci., 170(2020), art. No. 108651.

[3]

X.W. Liu, H. Zhang, G.L. Lin, Z.G. Wang, J.L. Zhang, and H.Y. Shi, Advances in deposition of diamond films on cemented carbide and progress of diamond coated cutting tools, Vacuum, 217(2023), art. No. 112562.

[4]

Zhao Y, Tu JP, Chen LX, Wei JJ, Liu JL, Li CM. Toughness enhancement of single-crystal diamond by the homoepitaxial growth of periodic nitrogen-doped nano-multilayers. Int. J. Miner. Metall. Mater., 2023, 30(4): 766.

[5]

Yang ZL, An K, Liu YC. et al.. Edge effect during microwave plasma chemical vapor deposition diamond-film: Multiphysics simulation and experimental verification. Int. J. Miner. Metall. Mater., 2024, 31(10): 2287.

[6]

X.F. Hu, M. Li, Y.N. Wang, et al., Growth of 2-inch diamond films on 4H-SiC substrate by microwave plasma CVD for enhanced thermal performance, Vacuum, 211(2023), art. No. 111895.

[7]

L.L. Li, H.J. Hei, Y. Ma, et al., Microstructure and mechanical property characterization of multilayer free-standing diamond/Mo films, Surf. Rev. Lett., 27(2020), No. 2, art. No. 1950100.

[8]

B. Yang, H.N. Li, B. Yu, N. Huang, L.S. Liu, and X. Jiang, Deposition of highly adhesive nanocrystalline diamond films on Ti substrates via diamond/SiC composite interlayers, Diam. Relat. Mater., 108(2020), art. No. 107928.

[9]

Zhang WJ, Zhang FQ, Zhang YF, Chen GH, Jiang XL. Effects of hydrogen on the transition layers between diamond films and Zr, Hf substrates. Diam. Relat. Mater., 1994, 3(11): 1315.

[10]

Yu ZM, Wang J, Wei QP, Meng LC, Hao SM, Long F. Preparation, characterization and electrochemical properties of boron-doped diamond films on Nb substrates. Trans. Nonferrous Met. Soc. China, 2013, 23(5): 1334.

[11]

Togashi F, Kobayashi K, Mitsuhashi M, Karasawa S, Ohya S, Watanabe T. Synthesis and morphology of CVD diamond on Ta and TaC film. J. Cryst. Growth, 1993, 128(1–4): 418.

[12]

Chen X, Narayan J. Effect of the chemical nature of transition-metal substrates on chemical-vapor deposition of diamond. J. Appl. Phys., 1993, 74(6): 4168.

[13]

Li YS, Hirose A. The effects of substrate compositions on adhesion of diamond films deposited on Fe-base alloys. Surf. Coat. Technol., 2007, 202(2): 280.

[14]

Durgalakshmi D, Chandran M, Manivasagam G, Ramachandra Rao MS, Asokamani R. Studies on corrosion and wear behavior of submicrometric diamond coated Ti alloys. Tribol. Int., 2013, 63: 132.

[15]

Barron PJ, Carruthers AW, Fellowes JW, Jones NG, Dawson H, Pickering EJ. Towards V-based high-entropy alloys for nuclear fusion applications. Scripta Mater., 2020, 176: 12.

[16]

Wu YQ, Liaw PK, Li RX. et al.. Relationship between the unique microstructures and behaviors of high-entropy alloys. Int. J. Miner. Metall. Mater., 2024, 31(6): 1350.

[17]

George EP, Curtin WA, Tasan CC. High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater., 2020, 188: 435.

[18]

Yan XH, Liaw PK, Zhang Y. Order and disorder in amorphous and high-entropy materials. Metall. Mater. Trans. A, 2021, 52(6): 2111.

[19]

Tian Y, Liu JN, Xue MM. et al.. Structure and corrosion behavior of FeCoCrNiMo high-entropy alloy coatings prepared by mechanical alloying and plasma spraying. Int. J. Miner. Metall. Mater., 2024, 31(12): 2692.

[20]

Huang YB, Xu N, Lu HL, Ren Y, Li SL, Wang YD. Microstructures and micromechanical behaviors of high-entropy alloys investigated by synchrotron X-ray and neutron diffraction techniques: A review. Int. J. Miner. Metall. Mater., 2024, 31(6): 1333.

[21]

Xin Y, Li SH, Qian YY. et al.. High-entropy alloys as a platform for catalysis: Progress, challenges, and opportunities. ACS Catal., 2020, 10(19): 11280.

[22]

C.X. Han, J.Q. Zhi, Z. Zeng, et al., Synthesis and characterization of nano-polycrystal diamonds on refractory high entropy alloys by chemical vapour deposition, Appl. Surf. Sci., 623(2023), art. No. 157108.

[23]

N.X. Wang, Y.S. Wang, K. Zheng, et al., Achieving CVD diamond films on Mo0.5(TiZrTaW)0.5 highly concentrated alloy for ultrastrong corrosion resistance, Surf. Coat. Technol., 466(2023), art. No. 129620.

[24]

Z. Zeng, Q. Zong, S.H. Sun, et al., Microwave plasma CVD of diamond films on high concentration alloys: Microstructure, hardness and wear properties, Vacuum, 222(2024), art. No. 113078.

[25]

A. Jena, S.K. Pattnaik, B.B. Palei, and S.K. Sarangi, Synthesis of diamond crystal growth on tungsten carbide inserts by HFCVD using various seeding powders, Appl. Phys. A, 128(2022), No. 4, art. No. 287.

[26]

Yan BB, Loh NL, Fu YQ, Sun CQ, Hing P. Surface and interface characterization of diamond coatings deposited on pure titanium. Surf. Coat. Technol., 1999, 115(2–3): 256.

[27]

Fries RJ, Wahman LA. Effect of stoichiometry on the thermal expansion of TaCx. J. Am. Ceram. Soc., 1967, 50(9): 475.

[28]

M. Behera, A. Panigrahi, M. Bönisch, G. Shankar, and P.K. Mishra, Structural stability and thermal expansion of TiTaNbMoZr refractory high entropy alloy, J. Alloy. Compd., 892(2022), art. No. 162154.

[29]

P. Jacobson and S. Stoupin, Thermal expansion coefficient of diamond in a wide temperature range, Diam. Relat. Mater., 97(2019), art. No. 107469.

[30]

B. Paramanik and D. Das, Synthesis of nanocrystalline diamond embedded diamond-like carbon films on untreated glass substrates at low temperature using (C2H2 + H2) gas composition in microwave plasma CVD, Appl. Surf. Sci., 579(2022), art. No. 152132.

[31]

Salgueiredo E, Amaral M, Neto MA, Fernandes AJS, Oliveira FJ, Silva RF. HFCVD diamond deposition parameters optimized by a Taguchi Matrix. Vacuum, 2011, 85(6): 701.

[32]

Ager JW, Drory MD. Quantitative measurement of residual biaxial stress by Raman spectroscopy in diamond grown on a Ti alloy by chemical vapor deposition. Phys. Rev. B, 1993, 48(4): 2601.

[33]

Wang SD, Xu DK, Wang BJ. et al.. Influence of phase dissolution and hydrogen absorption on the stress corrosion cracking behavior of Mg-7%Gd-5%Y-1%Nd-0.5%Zr alloy in 3.5 wt.% NaCl solution. Corros. Sci., 2018, 142: 185.

[34]

Taji I, Moayed MH, Mirjalili M. Correlation between sensitisation and pitting corrosion of AISI 403 martensitic stainless steel. Corros. Sci., 2015, 92: 301.

[35]

Pahlavan S, Moazen S, Taji I. et al.. Pitting corrosion of martensitic stainless steel in halide bearing solutions. Corros. Sci., 2016, 112: 233.

[36]

Seyedi M, Mirjalili M, Taji I, Armat O, Moayed MH. Inhibitive effect of nitrate on pitting corrosion of 17-4PH stainless steel. Corrosion, 2017, 73(2): 181.

[37]

Tang YM, Zuo Y, Wang JN, Zhao XH, Niu B, Lin B. The metastable pitting potential and its relation to the pitting potential for four materials in chloride solutions. Corros. Sci., 2014, 80: 111.

[38]

J.W. Shen, Y.B. Zeng, R.D. Zhang, and W.J. Kong, Effect of discharge thermal action in ECDM on electrochemical behaviours of matrix material and its recast layer in glycol-based solution, Corros. Sci., 241(2024), art. No. 112525.

[39]

Yuan SJ, Choong AMF, Pehkonen SO. The influence of the marine aerobic pseudomonas strain on the corrosion of 70/30 Cu-Ni alloy. Corros. Sci., 2007, 49(12): 4352.

[40]

Y.L. Lu, Y.X. Peng, X.D. Chang, and Z.Y. Shi, Atomic-scale insight on nanostructures and electrochemical properties of (NiCrCo)82Ti9Al9 high-entropy alloy coatings by density functional theory calculations, Corros. Sci., 241(2024), art. No. 112522.

[41]

Ye QF, Feng K, Li ZG. et al.. Microstructure and corrosion properties of CrMnFeCoNi high entropy alloy coating. Appl. Surf. Sci., 2017, 396: 1420.

[42]

Swain GM. The susceptibility to surface corrosion in acidic fluoride media: A comparison of diamond, HOPG, and glassy carbon electrodes. J. Electrochem. Soc., 1994, 141(12): 3382.

[43]

J.M. Rickman, H.M. Chan, M.P. Harmer, et al., Materials informatics for the screening of multi-principal elements and high-entropy alloys, Nat. Commun., 10(2019), No. 1, art. No. 2618.

[44]

Inselberg A. The plane with parallel coordinates. Vis. Comput., 1985, 1(2): 69.

[45]

J.M. Rickman, Data analytics and parallel-coordinate materials property charts, NPJ Comput. Mater., 4(2018), art. No. 5.

[46]

Chen RR, Qin G, Zheng HT. et al.. Composition design of high entropy alloys using the valence electron concentration to balance strength and ductility. Acta Mater., 2018, 144: 129.

[47]

Castillo Alvarez Y, González González Y, Jiménez Borges R, Iturralde Carrera LA, Álvarez-Alvarado JM, Rodríguez-Reséndiz J. Energy efficiency and mathematical modeling of shrimp pond oxygenation: A multiple regression experimental study. Eng, 2024, 5(4): 2862.

[48]

G. Ghani-Moghadam, Using a multiple regression model for predicting the soft X-ray laser gain coefficient from laser plasmas, Appl. Phys. B, 130(2024), No. 10, art. No. 181.

[49]

Ding XF, Sun X, Wang WJ, Zhang HM, Gao HN. Effect of methane concentration on the performance of diamond films prepared by MPCVD. Adv. Mater. Res., 2014, 1053: 402.

[50]

Chen YY, Duval T, Hung UD, Yeh JW, Shih HC. Microstructure and electrochemical properties of high entropy alloys: A comparison with type-304 stainless steel. Corros. Sci., 2005, 47(9): 2257.

[51]

George EP, Raabe D, Ritchie RO. High-entropy alloys. Nat. Rev. Mater., 2019, 4(8): 515.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/