Structure and electrical conductivity of compositionally complex double perovskite cobaltites

Sebastian L. Wachowski , Hanna Kavaliuk , Maria Sywanycz , Paula Rosiak , Tadeusz Miruszewski , Maria Gazda

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (11) : 2659 -2665.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (11) :2659 -2665. DOI: 10.1007/s12613-025-3158-y
Research Article
research-article

Structure and electrical conductivity of compositionally complex double perovskite cobaltites

Author information +
History +
PDF

Abstract

In this study, compositionally complex cobaltites with the general formula BaLnCo2O6−δ with three to eight different lanthanides at the Ln-site were synthesized using the solid-state reaction method and studied. Analysis of entropy metrics and configurational entropy calculations indicated that these compounds are medium entropy oxides. All of these crystallize as tetragonal double perovskites from the space group P4/mmm. The unit cell parameters are controlled by the average ionic radius, not the configurational entropy. On the other hand, the oxygen non-stoichiometry is consistently higher than in the case of low entropy double perovskite cobaltites. The total electrical conductivity of all materials in studied conditions is well above 50 S/cm, peaking at 1487 S/cm for BaLa1/3Nd1/3Gd1/3Co2O6−δ at 300°C. The electrical conductivity decreases with the number of substituents.

Keywords

high entropy oxides / cobaltites / double perovskites / mixed ionic-electronic conductors

Cite this article

Download citation ▾
Sebastian L. Wachowski, Hanna Kavaliuk, Maria Sywanycz, Paula Rosiak, Tadeusz Miruszewski, Maria Gazda. Structure and electrical conductivity of compositionally complex double perovskite cobaltites. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(11): 2659-2665 DOI:10.1007/s12613-025-3158-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yeh JW, Chen SK, Lin SJ, et al.. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater., 2004, 6(5299

[2]

C.M. Rost, E. Sachet, T. Borman, et al., Entropy-stabilized oxides, Nat. Commun., 6(2015), art. No. 8485.

[3]

Gazda M, Miruszewski T, Jaworski D, et al.. Novel class of proton conducting materials: High entropy oxides. ACS Mater. Lett., 2020, 2(101315

[4]

Skubida W, Jaworski D, Mielewczyk-Gryń A, et al.. Charge transport in high-entropy oxides. J. Phys. Chem. C, 2023, 127(2914534

[5]

Elameen AAA, Dawczak A, Miruszewski T, Gazda M, Wachowski S. Proton conductivity in multi-component ABO4-type oxides. Phys. Chem. Chem. Phys., 2023, 25(4229127

[6]

Chen DQ, Zhu XW, Yang XR, et al.. A review on structure-property relationships in dielectric ceramics using high-entropy compositional strategies. J. Am. Ceram. Soc., 2023, 106(116602

[7]

Xu Y, Sun LP, Li Q, Huo LH, Zhao H. Co-prosperity of electrocatalytic activity and stability in high entropy spinel (Cr0.2Mn0.2Fe0.2Ni0.2Zn0.2)3O4 for the oxygen evolution reaction. J. Mater. Chem. A, 2022, 10(3417633

[8]

Zhang MY, Duan XL, Gao Y, et al.. Tuning oxygen vacancies in oxides by configurational entropy. ACS Appl. Mater. Interfaces, 2023, 15(3945774

[9]

M.P. Jimenez-Segura, T. Takayama, D. Bérardan, et al., Longrange magnetic ordering in rocksalt-type high-entropy oxides, Appl. Phys. Lett., 114(2019), No. 12, art. No. 122401.

[10]

Zhang JJ, Yan JQ, Calder S, et al.. Long-range antiferromagnetic order in a rocksalt high entropy oxide. Chem. Mater., 2019, 31(103705

[11]

S.L. Wachowski, I. Szpunar, J. Pośpiech, et al., Physicochemical properties of La0.5Ba0.5Co1−xFexO3−δ (0≤≤1) as positrode for proton ceramic electrochemical cells, Acta Mater., 284(2025), art. No. 120585.

[12]

Wachowski SL, Szpunar I, Sorby MH, et al.. Structure and water uptake in BaLnCo2O6−δ (Ln = La, Pr, Nd, Sm, Gd, Tb and Dy). Acta Mater., 2020, 199: 297

[13]

Pelosato R, Cordaro G, Stucchi D, Cristiani C, Dotelli G. Cobalt based layered perovskites as cathode material for intermediate temperature Solid Oxide Fuel Cells: A brief review. J. Power Sources, 2015, 298: 46

[14]

Pelosato R, Donazzi A, Dotelli G, Cristiani C, Natali Sora I, Mariani M. Electrical characterization of co-precipitated LaBaCo2O5+δ and YBaCo2O5+δ oxides. J. Eur. Ceram. Soc., 2014, 34(164257

[15]

I. Szpunar, R. Strandbakke, M.H. Sorby, et al., High-temperature structural and electrical properties of BaLnCo2O6 positrodes, Materials, 13(2020), No. 18, art. No. 4044.

[16]

Szpunar I, Wachowski S, Miruszewski T, et al.. Electric and magnetic properties of lanthanum barium cobaltite. J. Am. Ceram. Soc., 2020, 103(31809

[17]

Strandbakke R, Wragg DS, Sorby MH, et al.. Structural properties of mixed conductor Ba1−xGd1−yLax+yCo2O6−δ. Dalton Trans., 2022, 51(4818667

[18]

Taskin AA, Lavrov AN, Ando Y. Fast oxygen diffusion in A-site ordered perovskites. Prog. Solid State Chem., 2007, 35(2–4481

[19]

A.A. Taskin, A.N. Lavrov, and Y. Ando, Achieving fast oxygen diffusion in perovskites by cation ordering, Appl. Phys. Lett., 86(2005), No. 9, art. No. 091910.

[20]

Strandbakke R, Cherepanov VA, Zuev AY, et al.. Gd- and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells. Solid State Ionics, 2015, 278: 120

[21]

Miruszewski T, Strandbakke R, Dzierzgowski K, et al.. A modified DC Hebb-Wagner polarization method for determining the partial protonic electrical conductivity in mixed-conducting BaGd0.3La0.7Co2O6−δ. J. Mater. Chem. A, 2024, 12(2213488

[22]

Balcerzak D, Szpunar I, Strandbakke R, et al.. Oxide nanoparticle exsolution in Lu-doped (Ba,La)CoO3. CrystEngComm, 2023, 25(304306

[23]

A.J. Carrillo, M. Balaguer, C. Solis, et al., Evaluating oxide nanoparticle exsolution on A-site deficient PrBaCo2O6−δ electrodes, J. Phys. Energy, 7(2025), No. 2, art. No. 025007.

[24]

Carrillo AJ, Löpez-Garcia A, Delgado-Galicia B, Serra JM. New trends in nanoparticle exsolution. Chem. Commun., 2024, 60(627987

[25]

F. Oseko, S. Wachowski, T. Miruszewski, M. Gazda, and A. Mielewczyk-Gryń, Dual exsolution in silver-functionalized layered and cubic perovskite oxides, J. Am. Ceram. Soc., 108(2025), No. 6, art. No. e20417.

[26]

D. Balcerzak, A. López-García, A.J. Carrillo, et al., Tailoring oxide nanoparticle exsolution in La0.5Ba0.5−yCo1−xFexO3−δ, J. Eur. Ceram. Soc., 45(2025), No. 10, art. No. 117347.

[27]

Vollestad E, Strandbakke R, Tarach M, et al.. Mixed proton and electron conducting double perovskite anodes for stable and efficient tubular proton ceramic electrolysers. Nat. Mater., 2019, 18(7752

[28]

Mielewczyk-Gryń A, Yang SH, Balaguer M, et al.. Energetics of formation and stability in high pressure steam of barium lanthanide cobaltite double perovskites. Dalton Trans., 2023, 52(175771

[29]

D. Gierszewska, I. Szpunar, F. Oseko, et al., Microstructural design of Ba0.5La0.5Co0.5Fe0.5O3 perovskite ceramics, Materials, 14(2021), No. 16, art. No. 4656.

[30]

J. Pospiech, M. Nadolska, M. Cieslik, et al., Additive manufacturing of Proton-Conducting Ceramics by robocasting with integrated laser postprocessing, Appl. Mater. Today, 40(2024), art. No. 102398.

[31]

O.F. Dippo and K.S. Vecchio, A universal configurational entropy metric for high-entropy materials, Scripta Mater., 201(2021), art. No. 113974.

[32]

M. Brahlek, M. Gazda, V. Keppens, et al., What is in a Name: Defining “high entropy” oxides, APL Mater., 10(2022), No. 11, art. No. 110902.

[33]

Toby BH, Von Dreele RB. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr, 2013, 46(2544

[34]

Ishizawa N, Asaka T, Kudo T, et al.. Structural evolution of GdBaCo2O5+δ (S = 7/18) at elevated temperatures. Chem. Mater., 2014, 26(226503

[35]

Grazulis S, Daskevic A, Merkys A, et al.. Crystallography open database (COD): An open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res., 2012, 40: D420

[36]

Müller-Buschbaum H, Schnering HGV. Zur struktur der A-form der sesquioxide der seltenen erden. strukturuntersuchungen an La2O3. Z. Anorg. Allg. Chem., 1965, 340(5–6232

[37]

I.A. Nekrasov, S.V. Streltsov, M.A. Korotin, and V.I. Anisimov, Influence of rare-earth ion radii on the low-spin to intermediate-spin state transition in lanthanide cobaltite perovskites: LaCoO3 versus HoCoO3, Phys. Rev. B, 68(2003), No. 23, art. No. 235113.

[38]

Nyholm RS, Tobe ML. The stabilization of oxidation states of the transition metals. Adv. Inorg. Chem. Radiochem., 1963, 5: 1

[39]

Steele B. Survey of materials selection for ceramic fuel cells II. Cathodes and anodes. Solid State Ionics, 1996, 86–88: 1223 No. Part 2

[40]

Vollestad E, Schrade M, Segalini J, Strandbakke R, Norby T. Relating defect chemistry and electronic transport in the double perovskite Ba1−xGd0.8La0.2+x(Co2O6−δ (BGLC). J. Mater. Chem. A, 2017, 5(3015743

RIGHTS & PERMISSIONS

The Author(s)

PDF

24

Accesses

0

Citation

Detail

Sections
Recommended

/