Experimental study and thermodynamic modeling of the phase equilibria in the Mg-rich corner of Mg-Zn-Mn system

Tian Yin , Yang Guo , Zheng Ma , Wenxin Hu , Qun Luo , Bin Liu , Jieyu Zhang , Guangxin Wu

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (10) : 2523 -2533.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (10) : 2523 -2533. DOI: 10.1007/s12613-025-3153-3
Research Article
research-article

Experimental study and thermodynamic modeling of the phase equilibria in the Mg-rich corner of Mg-Zn-Mn system

Author information +
History +
PDF

Abstract

Mg-Zn-Mn alloys have the advantages of low cost, excellent mechanical properties, and high corrosion resistance. To clarify the phase equilibria of Mg-Zn-Mn alloy in the Mg-rich corners, the present work experimentally investigated the phase equilibria in the Mg-rich corner at 300-400°C with equilibrated alloy method using electron probe micro analyzer (EPMA), X-ray diffractometer (XRD), transmission electron microscopy (TEM), and differential scanning calorimeter (DSC). Mn atoms were found to dissolve into MgZn2 to form a ternary solid-solution type compound, in which Mn content can be up to 15.1at% at 400°C. Three-phase equilibrium of α-Mg + MgZn2 + α-Mn and liquid + α-Mg + MgZn2 were confirmed at 400°C. Subsequently, thermodynamic modeling of the Mg-Zn-Mn system was carried out using the CALPHAD method based on the experimental data of this work and literature data. The calculated invariant reaction Liquid + α-Mn → α-Mg + MgZn2 at 430°C shows good agreement with the DSC results. In addition, the results of solidification path calculations explain the microstructure in the as-cast and annealed alloys well. The agreement between the calculated results and experimental data proves the self-consistency of the thermodynamic database, which can provide guidance for the compositional design of Mg-Zn-Mn alloys.

Keywords

magnesium alloys / phase equilibria / phase transitions / CALPHAD / thermodynamic databases

Cite this article

Download citation ▾
Tian Yin, Yang Guo, Zheng Ma, Wenxin Hu, Qun Luo, Bin Liu, Jieyu Zhang, Guangxin Wu. Experimental study and thermodynamic modeling of the phase equilibria in the Mg-rich corner of Mg-Zn-Mn system. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(10): 2523-2533 DOI:10.1007/s12613-025-3153-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Zhang Z, Zhang JH, Wang J. et al.. Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process. Int. J. Miner. Metall. Mater., 2021, 28(1): 30.

[2]

Nazeer F, Long JY, Yang Z, Li C. Superplastic deformation behavior of Mg alloys: A-review. J. Magnesium Alloys, 2022, 10(1): 97.

[3]

Yang Y, Xiong XM, Chen J, Peng XD, Chen DL, Pan FS. Research advances of magnesium and magnesium alloys worldwide in 2022. J. Magnesium Alloys, 2023, 11(8): 2611.

[4]

Yang H, Xie WL, Song JF. et al.. Current progress of research on heat-resistant Mg alloys: A review. Int. J. Miner. Metall. Mater., 2024, 31(6): 1406.

[5]

H.C. Chen, J.L. Sun, S.L. Yang, et al., Thermodynamics and kinetics of isothermal precipitation in magnesium alloys, Mater. Genome Eng. Adv., 3(2025), No. 1, art. No. e86.

[6]

H.C. Chen, T.C. Xie, Q. Liu, et al., Mechanism and prediction of aging time related thermal conductivity evolution of Mg-Zn alloys, J. Alloy. Compd., 930(2023), art. No. 167392.

[7]

Li HX, Xu WJ, Zhang YF. et al.. Prediction of the thermal conductivity of Mg-Al-La alloys by CALPHAD method. Int. J. Miner. Metall. Mater., 2024, 31(1): 129.

[8]

Lentz M, Klaus M, Beyerlein IJ, Zecevic M, Reimers W, Knezevic M. In situ X-ray diffraction and crystal plasticity modeling of the deformation behavior of extruded Mg-Li-(Al) alloys: An uncommon tension-compression asymmetry. Acta Mater., 2015, 86: 254.

[9]

Song YF, Li XH, Xu JL. et al.. Effect of annealing treatment on the microstructure and mechanical properties of warm-rolled Mg-Zn-Gd-Ca-Mn alloys. Int. J. Miner. Metall. Mater., 2024, 31(10): 2208.

[10]

Sahu MR, Kumar TSS, Chakkingal U. A review on recent advancements in biodegradable Mg-Ca alloys. J. Magnesium Alloys, 2022, 10(8): 2094.

[11]

H.Y. Wan, L. Ran, H. Lu, et al., Optimizing microstructure and enhancing hydrogen storage properties in Mg alloy via tailoring Ni and Si element, J. Magnesium Alloys, 2024, DOI: https://doi.org/10.1016/j.jma.2024.01.014.

[12]

L. Lei, Z.Y. Cui, H. Pan, K. Pang, X. Wang, and H.Z. Cui, Effect of extrusion on the microstructure and corrosion behavior of Mg-Zn-Mn-(0, 1.5)Sr alloys in Hank’s solution, Corros. Sci., 195(2022), art. No. 109975.

[13]

He WW, Zhang EL, Yang K. Effect of Y on the bio-corrosion behavior of extruded Mg-Zn-Mn alloy in Hank’s solution. Mater. Sci. Eng. C, 2010, 30(1): 167.

[14]

Y. Zhao, D.F. Zhang, J.Y. Xu, S.Y. Zhong, B. Jiang, and F.S. Pan, A good balance between strength and ductility in Mg-Zn-Mn-Gd alloy, Intermetallics, 132(2021), art. No. 107163.

[15]

Gao L, Yan H, Luo J, Luo AA, Chen RS. Microstructure and mechanical properties of a high ductility Mg-Zn-Mn-Ce magnesium alloy. J. Magnesium Alloys, 2013, 1(4): 283.

[16]

Zhang CJ, Yang GY, Xiao L. et al.. Effects of the extrusion parameters on microstructure, texture and room temperature mechanical properties of extruded Mg-2.49Nd-1.82Gd-0.2Zn-0.2Zr alloy. Int. J. Miner. Metall. Mater., 2025, 32(1): 136.

[17]

Jiang JM, Ni S, Yan HG, Wu Q, Song M. New orientations between β’2 phase and α matrix in a Mg-Zn-Mn alloy processed by high strain rate rolling. J. Alloy. Compd., 2018, 750: 465.

[18]

Jiang JM, Ni S, Yan HG, Yan N, Song M. 〈c + a〉 dislocations shearing (0001)α plate precipitates in an Mg-Zn-Mn alloy. Scripta Mater., 2019, 170: 24.

[19]

Gungor A, Incesu A. Effects of alloying elements and thermomechanical process on the mechanical and corrosion properties of biodegradable Mg alloys. J. Magnesium Alloys, 2021, 9(1): 241.

[20]

Wu Q, Fan CH, Yan HG. et al.. Deformation microstructures and texture evolution of the Mg-Zn-Mn alloy with high strain rate rolling. J. Mater. Res., 2023, 38(2): 404.

[21]

Y.H. Chen, K.B. Nie, Z.L. Liu, K.K. Deng, Q.X. Shi, and Z.D. Wang, Achieving high strength in graphene nanoplatelets reinforced Mg-Zn-Mn matrix composites via liquid-state molding technology and low temperature deformation process, J. Alloy. Compd., 968(2023), art. No. 171838.

[22]

Gröbner J, Mirkovic D, Ohno M, Schmid-Fetzer R. Experimental investigation and thermodynamic calculation of binary Mg-Mn phase equilibria. J. Phase Equilib. Diffus., 2005, 26(3): 234.

[23]

Liang P, Tarfa T, Robinson JA. et al.. Experimental investigation and thermodynamic calculation of the Al-Mg-Zn system. Thermochim. Acta, 1998, 314(1–2): 87.

[24]

X.J. Li, S.H. Liu, K. Xu, Y.H. Zhang, and Y. Du, Thermodynamic re-assessment and experimental confirmation for the Zn-Mn system, Calphad, 69(2020), art. No. 101770.

[25]

Gladyshevskii EI, Cherkashin EE. Solid solutions on the basis of metallic compounds. Russ. J. Inorg. Chem., 1956, 1: 288

[26]

Bumazhnov FT. Physiochochemical investigation at varied temperatures of solubility of zinc and manganese in magnesium. Izv. Vyss. Ucheben. Zaved., Tsvetn. Metall., 1960, 2(1): 138

[27]

Huang DD, Liu SH, Xu HH, Du Y. Phase equilibria of the Mg-Mn-Zn system at 593 K (320°C). J. Alloy. Compd., 2016, 688: 1115.

[28]

Ohno M, Schmid-Fetzer R. Mg-rich phase equilibria of Mg-Mn-Zn alloys analyzed by computational thermochemistry. Int. J. Mater. Res., 2006, 97(5): 526.

[29]

Ghosh P, Medraj M. Thermodynamic calculation of the Mg-Mn-Zn and Mg-Mn-Ce systems and re-optimization of their constitutive binaries. Calphad, 2013, 41: 89.

[30]

X.J. Li, S.H. Liu, D.D. Huang, and Y. Du, Thermodynamic modeling of the Mg-Mn-Zn system based on the refinement of the Mg-Zn and Mn-Zn systems, Calphad, 79(2022), art. No. 102479.

[31]

Denton AR, Ashcroft NW. Vegard’s law. Phys. Rev. A, 1991, 43(6): 3161.

[32]

Jacob KT, Raj S, Rannesh L. Vegard’s law: A fundamental relation or an approximation?. Int. J. Mater. Res., 2007, 98(9): 776.

[33]

Ghosh P, Mezbahul-Islam M, Medraj M. Critical assessment and thermodynamic modeling of Mg-Zn, Mg-Sn, Sn-Zn and Mg-Sn-Zn systems. Calphad, 2012, 36: 28.

[34]

Luo Q, Zhai C, Sun DK, Chen W, Li Q. Interpolation and extrapolation with the CALPHAD method. J. Mater. Sci. Technol., 2019, 35(9): 2115.

[35]

Cao W, Chen SL, Zhang F. et al.. PANDAT software with PanEngine, PanOptimizer and PanPrecipitation for multi-component phase diagram calculation and materials property simulation. Calphad, 2009, 33(2): 328.

[36]

Dinsdale AT. SGTE data for pure elements. Calphad, 1991, 15(4): 317.

[37]

Redlich O, Kister AT. Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem., 1948, 40(2): 345.

[38]

Muggianu YM, Gambino M, Bros JP. Enthalpies of formation of liquid alloys bismuth-gallium-tin at 723 K-choice of an analytical representation of integral and partial thermodynamic functions of mixing for this ternary-system. J. Chim. Phys. Phys. Chim. Biol., 1975, 72(1): 83.

[39]

Hillert M. The compound energy formalism. J. Alloy. Compd., 2001, 320(2): 161.

[40]

A. Jain, S.P. Ong, G. Hautier, et al., Commentary: The Materials Project: A materials genome approach to accelerating materials innovation, APL Mater., 1(2013), No. 1, art. No. 011002.

[41]

Kammerer CC, Behdad S, Zhou L. et al.. Diffusion kinetics, mechanical properties, and crystallographic characterization of intermetallic compounds in the Mg-Zn binary system. Intermetallics, 2015, 67: 145.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/