Structural engineering of MXenes towards high electrochemical performance in supercapacitors
Yan Liu , Kaiyang Guo , Yuanmeng Ge , Wenzheng Yan , Kai Gu , Yapeng Tian , Xinwei Cui
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (8) : 1783 -1812.
Structural engineering of MXenes towards high electrochemical performance in supercapacitors
Supercapacitors (SCs) stand out among various energy storage devices owing to their high power density and long-term cycling stability. As new two-dimensional material, MXenes have become a research hotspot in recent years owing to their unique structure and rich surface functional groups. Compared with other materials, MXenes are more promising for SCs owing to their tunable precursors, structural stability, and excellent electrical conductivity. However, the rate performance and electrochemical reaction activity of MXene materials are poor, and stacking severely limits their application. Therefore, various modification strategies are employed to improve the electrochemical performance of MXene materials. As the modification strategy of MXene electrode materials often involves increasing the number of ion transport channels to expose more active sites, the packing density is also affected to different degrees. Therefore, achieving a balance between high volumetric capacitance and rapid ion transport has become a key issue for the application of MXene-based SCs in wearable devices and microdevices. In this paper, the latest progress in the preparation methods and modification strategies of MXenes in recent years is reviewed with the aim of achieving both high volumetric capacitance and high ion transport for expanding the application of MXene-based SCs in microdevices and wearable devices.
MXenes / structural engineering / electrochemical performance / supercapacitor
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
E. Pomerantseva, F. Bonaccorso, X.L. Feng, Y. Cui, and Y. Gogotsi, Energy storage: The future enabled by nanomaterials, Science, 366(2019), No. 6468, art. No. eaan8285. |
| [5] |
G.W. Kim, S. Lee, G. Kim, H. Lee, K.T. Lee, and S.Y. Kim, Additive-free gelation of graphene oxide dispersions via mild thermal annealing: Implications for 3D printing and supercapacitor applications, Adv. Mater., 36(2024), No. 46, art. No. 2411479. |
| [6] |
|
| [7] |
X.B. Zang, J.L. Wang, Y.J. Qin, et al., Enhancing capacitance performance of Ti3C2Tx MXene as electrode materials of supercapacitor: From controlled preparation to composite structure construction, Nano Micro Lett., 12(2020), No. 1, art. No. 77. |
| [8] |
H.C. Hu, C.S. Deng, H. Gao, et al., 3D nanoprinting of heterogeneous metal oxides with high shape fidelity, Adv. Mater., 36(2024), No. 32, art. No. 2405053. |
| [9] |
X.Y. Chen, Q.F. Liu, L.K. Cheng, et al., Advanced electrochromic energy storage devices based on conductive polymers, Adv. Mater. Technol., 9(2024), No. 21, art. No. 2301969. |
| [10] |
|
| [11] |
K. Qi, Z.Z. Jin, D. Wang, Z.Y. Chen, X.P. Guo, and Y.B. Qiu, Insight into effect of electrolyte temperature on electroactivity degradation of conducting polypyrrole in NaOH, Polym. Degrad. Stab., 189(2021), art. No. 109593. |
| [12] |
|
| [13] |
|
| [14] |
J.F. Li, Z.X. Yang, C.F. Wang, et al., Rapid electron transfer via hetero-interface engineering of 2D MOF anchored Ti3C2 MXene nanosheet for enhanced photocatalytic disinfection, Appl. Catal. B: Environ., 339(2023), art. No. 123163. |
| [15] |
R.A. Soomro, P. Zhang, B.M. Fan, Y. Wei, and B. Xu, Progression in the oxidation stability of MXenes, Nano-Micro Lett., 15(2023), No. 1, art. No. 108. |
| [16] |
F.C. Cao, Y. Zhang, H.Q. Wang, et al., Recent advances in oxidation stable chemistry of 2D MXenes, Adv. Mater., 34(2022), No. 13, art. No. 2107554. |
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
Y. Wei, P. Zhang, R.A. Soomro, Q.Z. Zhu, and B. Xu, Advances in the synthesis of 2D MXenes, Adv. Mater., 33(2021), No. 39, art. No. 2103148. |
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
J.X. Quan, X.P. Jiang, T. Ding, et al., Recent progress in MXene fiber: Materials, fabrication techniques, and potential applications, Chem. Eng. J., 503(2025), art. No. 158320. |
| [25] |
P. Zhang, J.P. Li, D.Y. Yang, R.A. Soomro, and B. Xu, Flexible carbon dots-intercalated MXene film electrode with outstanding volumetric performance for supercapacitors, Adv. Funct. Mater., 33(2023), No. 1, art. No. 2209918. |
| [26] |
Y.H. Wang, Y.X. Yuan, H.Y. Geng, W.Q. Yang, and X.R. Chen, Boosting ion diffusion kinetics of MXene inks with water-in-salt electrolyte for screen-printed micro-supercapacitors, Adv. Funct. Mater., 34(2024), No. 34, art. No. 2400887. |
| [27] |
|
| [28] |
F. E. A. Latif, A. Numan, N.M. Mubarak, et al., Evolution of MXene and its 2D heterostructure in electrochemical sensor applications, Coord. Chem. Rev., 471(2022), art. No. 214755. |
| [29] |
|
| [30] |
|
| [31] |
S. Panda, K. Deshmukh, S.K. Khadheer Pasha, J. Theerthagiri, S. Manickam, and M.Y. Choi, MXene based emerging materials for supercapacitor applications: Recent advances, challenges, and future perspectives, Coord. Chem. Rev., 462(2022), art. No. 214518. |
| [32] |
|
| [33] |
P.F. Hou, Y.M. Tian, Y. Xie, et al., Unraveling the oxidation behaviors of MXenes in aqueous systems by active-learning-potential molecular-dynamics simulation, Angew. Chem. Int. Ed., 62(2023), No. 32, art. No. e202304205. |
| [34] |
O. Mashtalir, M. Naguib, V.N. Mochalin, et al., Intercalation and delamination of layered carbides and carbonitrides, Nat. Commun., 4(2013), art. No. 1716. |
| [35] |
|
| [36] |
N.J. Chen, Z.Y. Duan, W.R. Cai, et al., Supercritical etching method for the large-scale manufacturing of MXenes, Nano Energy, 107(2023), art. No. 108147. |
| [37] |
Y.B Wang, B. Zhou, Q. Tang, et al., Ultrafast synthesis of MXenes in minutes via low-temperature molten salt etching, Adv. Mater., 36(2024), No. 49, art. No. 2410736. |
| [38] |
|
| [39] |
X.Q. Bin, Y.P. Tian, Y.Y. Luo, et al., High-performance flexible and free-standing N-doped Ti3C2Tx/MoOx films as electrodes for supercapacitors, Electrochim. Acta, 389(2021), art. No. 138774. |
| [40] |
Z.G. Du, C. Wu, Y.C. Chen, et al., High-entropy atomic layers of transition-metal carbides (MXenes), Adv. Mater., 33(2021), No.39, art. No. 2101473. |
| [41] |
|
| [42] |
X. Tang, X. Guo, W.J. Wu, and G.X. Wang, 2D metal carbides and nitrides (MXenes) as high-performance electrode materials for lithium-based batteries, Adv. Energy Mater., 8(2018), No. 33, art. No. 1801897. |
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
J.M. Zhu, S.L. Zhu, Z.D. Cui, et al., Solvent-free one-step green synthesis of MXenes by “gas-phase selective etching”, Energy Storage Mater., 70(2024), art. No. 103503. |
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
Y.F. Guan, R. Zhao, Y. Cong, et al., Flexible Ti2C MXene film: Synthesis, electrochemical performance and capacitance behavior, Chem. Eng. J., 433(2022), art. No. 133582. |
| [60] |
B. Anasori, M.R. Lukatskaya, and Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater., 2(2017), art. No. 16098. |
| [61] |
|
| [62] |
Q. Zhang, B. Gao, L. Zhang, et al., Anomalous water molecular gating from atomic-scale graphene capillaries for precise and ultrafast molecular sieving, Nat. Commun., 14(2023), No. 1, art. No. 6615. |
| [63] |
|
| [64] |
|
| [65] |
|
| [66] |
Y.Y. Xie, G.L. Chen, Y. Tang, et al., Unraveling the ionic storage mechanism of flexible nitrogen-doped MXene films for high-performance aqueous hybrid supercapacitors, Small, 20(2024), No. 51, art. No. 2405817. |
| [67] |
Y.P. Tian, M.M. Ju, Y.J. Luo, X.Q. Bin, X.J. Lou, and W.X. Que, In situ oxygen doped Ti3C2Tx MXene flexible film as supercapacitor electrode, Chem. Eng. J., 446(2022), art. No. 137451. |
| [68] |
|
| [69] |
|
| [70] |
|
| [71] |
S. Pu, Z.X. Wang, Y.T. Xie, et al., Origin and regulation of self-discharge in MXene supercapacitors, Adv. Funct. Mater., 33(2023), No. 8, art. No. 2208715. |
| [72] |
|
| [73] |
|
| [74] |
|
| [75] |
|
| [76] |
Y.H. Wang, C. Ma, W.Q. Ma, et al., Enhanced low-temperature Li-ion storage in MXene titanium carbide by surface oxygen termination, 2D Mater., 6(2019), No. 4, art. No. 045025. |
| [77] |
|
| [78] |
|
| [79] |
L.Y. Liu, H. Zschiesche, M. Antonietti, et al., Tuning the surface chemistry of MXene to improve energy storage: Example of nitrification by salt melt, Adv. Energy Mater., 13(2023), No. 2, art. No. 2202709. |
| [80] |
|
| [81] |
A. Saha, N. Shpigel, Rosy, et al., Enhancing the energy storage capabilities of Ti3C2Tx MXene electrodes by atomic surface reduction, Adv. Funct. Mater., 31(2021), No. 52, art. No. 2106294. |
| [82] |
S. Li, Q. Shi, Y. Li, et al., Intercalation of metal ions into Ti3C2Tx MXene electrodes for high-areal-capacitance microsupercapacitors with neutral multivalent electrolytes, Adv. Funct. Mater., 30(2020), No. 40, art. No. 2003721. |
| [83] |
|
| [84] |
Z.W. Gao, W.R. Zheng, and L.Y.S. Lee, Highly enhanced pseudocapacitive performance of vanadium-doped MXenes in neutral electrolytes, Small, 15(2019), No. 40, art. No. 1902649. |
| [85] |
|
| [86] |
|
| [87] |
|
| [88] |
L.K. Wang, M.K. Han, C.E. Shuck, X.H. Wang, and Y. Gogotsi, Adjustable electrochemical properties of solid-solution MXenes, Nano Energy, 88(2021), art. No. 106308. |
| [89] |
|
| [90] |
|
| [91] |
Z.G. Du, C. Wu, Y.C. Chen, et al., High-entropy carbonitride MAX phases and their derivative MXenes, Adv. Energy Mater., 12(2022), No. 6, art. No. 2103228. |
| [92] |
|
| [93] |
H.H. Wang, P. Li, J.Y. Ren, et al., Complexation-induced mechanically stiff and reprocessable supramolecular polymeric materials with facile surface patterning, Mater. Today Chem., 42(2024), art. No. 102365. |
| [94] |
|
| [95] |
H.Y. Xu, R.X. Zheng, D.Y. Du, et al., Adjusting the 3d orbital occupation of Ti in Ti3C2 MXene via nitrogen doping to boost oxygen electrode reactions in Li–O2 battery, Small, 19(2023), No. 9, art. No. 2206611. |
| [96] |
Z.X. Liu, Y.P. Tian, S.Q. Li, et al., Revealing high-rate and high volumetric pseudo-intercalation charge storage from boron-vacancy doped MXenes, Adv. Funct. Mater., 33(2023), No. 40, art. No. 2301994. |
| [97] |
W.Z. Bao, L. Liu, C.Y. Wang, S. Choi, D. Wang, and G.X. Wang, Facile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries, Adv. Energy Mater., 8(2018), No. 13, art. No. 1702485. |
| [98] |
|
| [99] |
|
| [100] |
|
| [101] |
N.T. Wu, J.K. Shen, X.L. Zhou, et al., Constructing iron vacancies in thiospinel FeIn2S4 to modulate Fe D-band center and accelerate sodiation kinetics enabling high-rate and durable sodium storage, Adv. Energy Mater., 15(2025), No. 19, art. No. 2405729. |
| [102] |
|
| [103] |
|
| [104] |
|
| [105] |
J.M. Yuan, M.B. Gao, Z.Q. Liu, et al., Hyperloop-like diffusion of long-chain molecules under confinement, Nat. Commun., 14(2023), No. 1, art. No. 1735. |
| [106] |
P. Chang, H. Mei, Y. Zhao, et al., Nature-inspired 3D spiral grass structured graphene quantum dots/MXene nanohybrids with exceptional photothermal-driven pseudo-capacitance improvement, Adv. Sci., 9(2022), No. 30, art. No. 2204086. |
| [107] |
C. Zhang, X.T. Yin, G.J. Qian, Z. Sang, Y.W. Yang, and W.X. Que, Gate voltage adjusting PbS–I quantum-dot-sensitized InGaZnO hybrid phototransistor with high-sensitivity, Adv. Funct. Mater., 34(2024), No. 4, art. No. 2308897. |
| [108] |
X.T. Zuo, L.F. Wang, M.M. Zhen, T.T. You, D.P. Liu, and Y. Zhang, Multifunctional TiN–MXene–Co@CNTs networks as sulfur/lithium host for high-areal-capacity lithium-sulfur batteries, Angew. Chem. Int. Ed., 63(2024), No. 35, art. No. e202408026. |
| [109] |
|
| [110] |
X. Liang, Y. Rangom, C.Y. Kwok, Q. Pang, and L.F. Nazar, Interwoven MXene nanosheet/carbon-nanotube composites as Li–S cathode hosts, Adv. Mater., 29(2017), No. 3, art. No. 1603040. |
| [111] |
S.J. Wan, X. Li, Y. Chen, et al., Ultrastrong MXene films via the synergy of intercalating small flakes and interfacial bridging, Nat. Commun., 13(2022), No. 1, art. No. 7340. |
| [112] |
|
| [113] |
|
| [114] |
Y.B. Wang, N.J. Chen, B. Zhou, et al., NH3-induced in situ etching strategy derived 3D-interconnected porous MXene/carbon dots films for high performance flexible supercapacitors, Nano micro Lett., 15(2023), No. 1, art. No. 231. |
| [115] |
|
| [116] |
Q.D. Liang, K. Liu, T. Xu, et al., Interfacial modulation of Ti3C2Tx MXene by cellulose nanofibrils to construct hybrid fibers with high volumetric specific capacitance, Small, 20(2024), No. 17, art. No. 2307344. |
| [117] |
G.Q. Zhou, M.C. Li, C.Z. Liu, Q.L. Wu, and C.T. Mei, 3D printed Ti3C2Tx MXene/cellulose nanofiber architectures for solid-state supercapacitors: Ink rheology, 3D printability, and electrochemical performance, Adv. Funct. Mater., 32(2022), No. 14, art. No. 2109593. |
| [118] |
L.Y. Zhu, H.B. Yang, T. Xu, L.Y. Wang, J.D. Lei, and C.L. Si, Engineered nanochannels in MXene heterogeneous proton exchange membranes mediated by cellulose nanofiber/sodium alginate dual crosslinked networks, Adv. Funct. Mater., 35(2025), No. 19, art. No. 2419334. |
| [119] |
H.L. Zhan, Z.Y. Xiong, C. Cheng, Q.H. Liang, J.Z. Liu, and D. Li, Solvation-involved nanoionics: New opportunities from 2D nanomaterial laminar membranes, Adv. Mater., 32(2020), No. 18, art. No. 1904562. |
| [120] |
|
| [121] |
X.L. Li, N. Li, Z.D. Huang, et al., Enhanced redox kinetics and duration of aqueous I2/I− conversion chemistry by MXene confinement, Adv. Mater., 33(2021), No. 8, art. No. 2006897. |
| [122] |
M. Salanne, B. Rotenberg, K. Naoi, et al., Efficient storage mechanisms for building better supercapacitors, Nat. Energy, 1(2016), art. No. 16070. |
| [123] |
|
| [124] |
|
| [125] |
|
| [126] |
|
| [127] |
J.F. He, Y.C. Tang, G.G. Liu, et al., Intrinsic hydrogen-bond donors-lined organophosphate superionic nanochannels levering high-rate-endurable aqueous Zn batteries, Adv. Energy Mater., 12(2022), No. 46, art. No. 2202661. |
| [128] |
J. Tang, T. Mathis, X.W. Zhong, et al., Optimizing ion pathway in titanium carbide MXene for practical high-rate supercapacitor, Adv. Energy Mater., 11(2021), No. 4, art. No. 2003025. |
| [129] |
|
| [130] |
|
| [131] |
K. Liang, R.A. Matsumoto, W. Zhao, et al., Engineering the interlayer spacing by pre-intercalation for high performance supercapacitor MXene electrodes in room temperature ionic liquid (adv. funct. mater. 33/2021), Adv. Funct. Mater., 31(2021), No. 33, art. No. 2170246. |
| [132] |
|
| [133] |
K. Li, J. Zhao, A. Zhussupbekova, et al., 4D printing of MXene hydrogels for high-efficiency pseudocapacitive energy storage, Nat. Commun., 13(2022), No. 1, art. No. 6884. |
| [134] |
M.J. Wang, Y.F. Cheng, H.Y. Zhang, et al., Nature-inspired interconnected macro/meso/micro-porous MXene electrode, Adv. Funct. Mater., 33(2023), No. 12, art. No. 2211199. |
| [135] |
M.R. Lukatskaya, S. Kota, Z.F. Lin, et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides, Nat. Energy, 2(2017), art. No. 17105. |
| [136] |
P. Zhang, Y.M. Peng, Q.Z. Zhu, R.A. Soomro, N. Sun, and B. Xu, 3D foam-based MXene architectures: Structural and electrolytic engineering for advanced potassium-ion storage, Energy Environ. Mater., 7(2024), No. 4, art. No. e12379. |
| [137] |
P. Zhang, Q.Z. Zhu, R.A. Soomro, et al., In situ ice template approach to fabricate 3D flexible MXene film-based electrode for high performance supercapacitors, Adv. Funct. Mater., 30(2020), No. 47, art. No. 2000922. |
| [138] |
|
| [139] |
H.W. Chen, H.P. Wang, and C. Li, Mechanically induced nanoscale architecture endows a titanium carbide MXene electrode with integrated high areal and volumetric capacitance, Adv. Mater., 34(2022), No. 43, art. No. 2205723. |
| [140] |
P.L. Ji, L. Liu, Y. Deng, et al., Three-dimensional hierarchical porous MXene aerogel with outstanding rate performance for flexible supercapacitors, J. Energy Storage, 93(2024), art. No. 112194. |
| [141] |
J.Y. Dong, L. Hua, Z.Q. Lu, et al., Double cross-linking system for constructing tortuosity-lowered and strength-enhanced porous MXene films with superior capacitive performance and electromagnetic shielding efficiency, Energy Storage Mater., 72(2024), art. No. 103686. |
| [142] |
|
| [143] |
J.M. Zhu, S.L. Zhu, Z.D. Cui, et al., Dual redox reaction sites for pseudocapacitance based on Ti and –P functional groups of Ti3C2PBrx MXene, Angew. Chem. Int. Ed., 63(2024), No. 27, art. No. e202403508. |
| [144] |
X.C. Wei, M. Cai, F.L. Yuan, et al., The surface functional modification of Ti3C2Tx MXene by phosphorus doping and its application in quasi-solid state flexible supercapacitor, Appl. Surf. Sci., 606(2022), art. No. 154817. |
| [145] |
|
| [146] |
X.W. Hu, N. Gong, Q.C. Zhang, et al., N-terminalized Ti3C2Tx MXene for supercapacitor with extraordinary pseudocapacitance performance, Small, 20(2024), No. 8, art. No. 2306997. |
| [147] |
F.L. Yang, D. Hegh, D.X. Song, et al., Synthesis of nitrogensulfur Co-doped Ti3C2Tx MXene with enhanced electrochemical properties, Mater. Rep. Energy, 2(2022), No. 1, art. No. 100079. |
| [148] |
D. Lu, Y.W. Lu, Y.F. Liang, et al., The phosphorus doping modification of Ti3C2Tx MXene films assisted by tripolyphosphate-crosslinking for flexible supercapacitors, J. Energy Storage, 100(2024), art. No. 113524. |
| [149] |
|
| [150] |
P.C. Sun, J.Y. Liu, Q. Liu, et al., Nitrogen and sulfur Co-doped MXene ink without additive for high-performance inkjet-printing micro-supercapacitors, Chem. Eng. J., 450(2022), art. No. 138372. |
| [151] |
W.W. Liu, D. Luo, M.W. Zhang, et al., Engineered MXene quantum dots for micro-supercapacitors with excellent capacitive behaviors, Nano Energy, 122(2024), art. No. 109332. |
| [152] |
Y.H. Xue, S.F. Chao, M. Xu, et al., Multi-layers hexagonal hole MXene trap constructed by carbon vacancy defect regulation strategy enables high energy density potassium-ions storage, Energy Storage Mater., 71(2024), art. No. 103558. |
| [153] |
C.J. Shi, Z.J. Liu, Z. Tian, et al., Regulated layer spacing and functional surface group of MXene film by hexamethylenetetramine for high-performance supercapacitors, Appl. Surf. Sci., 596(2022), art. No. 153632. |
| [154] |
|
| [155] |
W.M. Chen, D.T. Zhang, K. Yang, M. Luo, P. Yang, and X.Y. Zhou, Mxene (Ti3C2Tx)/cellulose nanofiber/porous carbon film as free-standing electrode for ultrathin and flexible supercapacitors, Chem. Eng. J., 413(2021), art. No. 127524. |
| [156] |
|
| [157] |
R.J. Zhang, J.D. Dong, W. Zhang, et al., Synergistically coupling of 3D FeNi–LDH arrays with Ti3C2Tx–MXene nanosheets toward superior symmetric supercapacitor, Nano Energy, 91(2022), art. No. 106633. |
| [158] |
|
| [159] |
Z.X. Zhu, Z.X. Wang, Z.H. Ba, et al., 3D MXene-holey graphene hydrogel for supercapacitor with superior energy storage, J. Energy Storage, 47(2022), art. No. 103911. |
| [160] |
|
University of Science and Technology Beijing
/
| 〈 |
|
〉 |