Corrosion behavior of 650 MPa high strength low alloy steel in industrial polluted environments containing different concentrations of Cl

Lianjun Hao , Xiaokun Cai , Tianqi Chen , Chenyu Zhang , Chao Liu , Xuequn Cheng , Xiaogang Li

International Journal of Minerals, Metallurgy, and Materials ›› 2026, Vol. 33 ›› Issue (1) : 228 -241.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2026, Vol. 33 ›› Issue (1) :228 -241. DOI: 10.1007/s12613-025-3135-5
Research Article
research-article

Corrosion behavior of 650 MPa high strength low alloy steel in industrial polluted environments containing different concentrations of Cl

Author information +
History +
PDF

Abstract

This study utilizes wet/dry cyclic corrosion testing combined with corrosion big data technology to investigate the mechanism by which chloride ions (Cl) influence the corrosion behavior of 650 MPa high-strength low-alloy (HSLA) steel in industrially polluted environments. The corrosion process of 650 MPa HSLA steel occurred in two distinct stages: an initial corrosion stage and a stable corrosion stage. During the initial phase, the weight loss rate increased rapidly owing to the instability of the rust layer. Notably, this study demonstrated that 650 MPa HSLA steel exhibited superior corrosion resistance in Cl-containing environments. The formation of a corrosion-product film eventually reduced the weight-loss rate. However, the intrusion of Cl at increasing concentrations gradually destabilized the α/γ* phases of the rust layer, leading to a looser structure and lower polarization resistance (Rp). The application of corrosion big data technology in this study facilitated the validation and analysis of the experimental results, offering new insights into the corrosion mechanisms of HSLA steel in chloride-rich environments.

Keywords

HSLA steel / chlorine / corrosion behavior / corrosion big data

Cite this article

Download citation ▾
Lianjun Hao, Xiaokun Cai, Tianqi Chen, Chenyu Zhang, Chao Liu, Xuequn Cheng, Xiaogang Li. Corrosion behavior of 650 MPa high strength low alloy steel in industrial polluted environments containing different concentrations of Cl. International Journal of Minerals, Metallurgy, and Materials, 2026, 33(1): 228-241 DOI:10.1007/s12613-025-3135-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Khan MS, Shi XB, Yuan SF, et al. . Study on microbiologically influenced corrosion of HSLA-65 steel. J. Mater. Res. Technol., 2024, 32: 2244.

[2]

R.C. Chen, L.Y. Chen, Z.G. Wang, R.G. Guan, and H.J. Kang, Heterogeneous nucleation of carbides attached to Y2O3 in Y-modified H13 steel, Mater. Charact., 200(2023), art. No. 112891.

[3]

X.P. Guo, M. Tan, T. Li, et al., Formation mechanisms and three-dimensional characterization of composite inclusion of MnS–Al2O3 in high speed wheel steel, Mater. Charact., 197(2023), art. No. 112669.

[4]

Lee SG, Kim B, Sohn SS, Kim WG, Um KK, Lee S. Effects of local-brittle-zone (LBZ) microstructures on crack initiation and propagation in three Mo-added high-strength low-alloy (HSLA) steels. Mater. Sci. Eng. A, 2019, 760: 125.

[5]

Luo X, Chen XH, Wang T, Pan SW, Wang ZD. Effect of morphologies of martensite–austenite constituents on impact toughness in intercritically reheated coarse-grained heat-affected zone of HSLA steel. Mater. Sci. Eng. A, 2018, 710: 192.

[6]

W.Z. Yan, X. Luo, G. Xu, H.H. Wang, Z.D. Wang, and X.H. Chen, Significant improvement in CGHAZ toughness of HSLA steel via welding with trailing mechanical treatment, Mater. Sci. Eng. A, 837(2022), art. No. 142725.

[7]

Zhong W, Hu JJ, Shen P, Wang CY, Lius QY. Experimental investigation between rolling contact fatigue and wear of high-speed and heavy-haul railway and selection of rail material. Wear, 2011, 271(9–10): 2485.

[8]

Cannon DF, Edel KO, Grassie SL, Sawley K. Rail defects: An overview. Fatigue Fract. Eng. Mater. Struct., 2003, 26(10): 865.

[9]

Bayuaji R, Sigit Darmawan M, Husin NA, Anugraha RB, Budipriyanto A, Stewart MG. Corrosion damage assessment of a reinforced concrete canal structure of power plant after 20years of exposure in a marine environment: A case study. Eng. Fail. Anal., 2018, 84: 287.

[10]

Shabani H, Goudarzi N, Shabani M. Failure analysis of a natural gas pipeline. Eng. Fail. Anal., 2018, 84: 167.

[11]

Sharp JV, Billingham J, Robinson MJ. The risk management of high-strength steels in jack-ups in seawater. Mar. Struct., 2001, 14(4–5): 537.

[12]

Kadowaki M, Muto I, Sugawara Y, Doi T, Kawano K, Hara N. Real-time microelectrochemical observations of very early stage pitting on ferrite-pearlite steel in chloride solutions. J. Electrochem. Soc., 2017, 164(6): C261.

[13]

Al-Abbasi FM. Micromechanical modeling of ferrite–pearlite steels. Mater. Sci. Eng. A, 2010, 527(26): 6904.

[14]

D.N. Staicopolus, The role of cementite in the acidic corrosion of steel, J. Electrochem. Soc., 110(1963), No. 11, art. No. 1121.

[15]

Zhao JB, Wang PX, Ma HC, Cheng XQ, Li XG. Essential role of Si in enhancing corrosion resistance of high strength low alloy steels in marine environment. J. Mater. Res. Technol., 2024, 30: 3328.

[16]

Sathyanarayanan A, Köhl A, Stammer D. Ocean salinity changes in the global ocean under global warming conditions. part I: Mechanisms in a strong warming scenario. J. Clim., 2021, 34(20): 8219

[17]

Durack PJ. Ocean salinity and the global water cycle. Oceanography, 2015, 28(1): 20.

[18]

Behjat A, Shamanian M, Atapour M, Sarmadi MA. Microstructure and corrosion properties of friction stir-welded high-strength low-alloy steel. Trans. Indian Inst. Met., 2021, 74(7): 1763.

[19]

Wu W, Liu ZY, Li XG, Du CW, Cui ZY. Influence of different heat-affected zone microstructures on the stress corrosion behavior and mechanism of high-strength low-alloy steel in a sulfurated marine atmosphere. Mater. Sci. Eng. A, 2019, 759: 124.

[20]

Kahyarian A, Achour M, Nesic SEl-sherik AM. Mathematical modeling of uniform CO2 corrosion. Trends in Oil and Gas Corrosion Research and Technologies, 2017805.

[21]

J.A. Rodríguez, J. Cruz-Borbolla, P.A. Arizpe-Carreón, and E. Gutiérrez, Mathematical models generated for the prediction of corrosion inhibition using different theoretical chemistry simulations, Materials, 13(2020), No. 24, art. No. 5656.

[22]

N. Van den Steen, Y. Gonzalez-Garcia, J.M.C. Mol, H. Terryn, and Y. Van Ingelgem, Predicting the effect of droplet geometry and size distribution on atmospheric corrosion, Corros. Sci., 202(2022), art. No. 110308.

[23]

Mendoza AR, Corvo F. Outdoor and indoor atmospheric corrosion of carbon steel. Corros. Sci., 1999, 41(1): 75.

[24]

Marja-aho M, Rajala P, Saarivirta EH, et al. . Copper corrosion monitoring by electrical resistance probes in anoxic groundwater environment in the presence and absence of sulfate reducing bacteria. Sens. Actuators A: Phys., 2018, 274: 252.

[25]

Sun GD, Qiao GF, Xu B. Corrosion monitoring sensor networks with energy harvesting. IEEE Sens. J., 2011, 11(6): 1476.

[26]

Duffó GS, Farina SB, Giordano CM. Characterization of solid embeddable reference electrodes for corrosion monitoring in reinforced concrete structures. Electrochim. Acta, 2009, 54(3): 1010.

[27]

Mizuno D, Suzuki S, Fujita S, Hara N. Corrosion monitoring and materials selection for automotive environments by using Atmospheric Corrosion Monitor (ACM) sensor. Corros. Sci., 2014, 83: 217.

[28]

B.Q. Wang, Y.R. Li, X.Q. Cheng, et al., Data-driven optimization model customization for atmospheric corrosion on low-alloy steel: Incorporating the dynamic evolution of the surface rust layer, Corros. Sci., 221(2023), art. No. 111349.

[29]

Kouril M, Prosek T, Scheffel B, Dubois F. High sensitivity electrical resistance sensors for indoor corrosion monitoring. Corros. Eng. Sci. Technol., 2013, 48(4): 282.

[30]

Li S, Kim YG, Jung S, Song HS, Lee SM. Application of steel thin film electrical resistance sensor for in situ corrosion monitoring. Sens. Actuators B: Chem., 2007, 120(2): 368.

[31]

M. Zhu, B.Z. Zhao, Y.F. Yuan, S.Y. Guo, and G.Y. Wei, Study on corrosion behavior and mechanism of CoCrFeMnNi HEA interfered by AC current in simulated alkaline soil environment, J. Electroanal. Chem., 882(2021), art. No. 115026.

[32]

Y.M. Fan, W. Liu, Z.T. Sun, et al., Effect of chloride ion on corrosion resistance of Ni-advanced weathering steel in simulated tropical marine atmosphere, Constr. Build. Mater., 266(2021), art. No. 120937.

[33]

Z.H. Jiang, T.Q. Chen, Z.C. Che, et al., Effect of Ca–Mg microalloying on corrosion behavior and corrosion resistance of low alloy steel in the marine atmospheric environment, Corros. Sci., 234(2024), art. No. 112134.

[34]

T.Y. Zhang, Y.L. Li, X. Li, et al., Integral effects of Ca and Sb on the corrosion resistance for the high strength low alloy steel in the tropical marine environment, Corros. Sci., 208(2022), art. No. 110708.

[35]

T.Q. Chen, X.K. Cai, Y.B. Zhong, et al., Assessing the durability of low-alloy rebars in China plateau environment by outdoor exposure and on-site online monitoring, Constr. Build. Mater., 468(2025), art. No. 140475.

[36]

Z.B. Pei, D.W. Zhang, Y.J. Zhi, et al., Towards understanding and prediction of atmospheric corrosion of an Fe/Cu corrosion sensor via machine learning, Corros. Sci., 170(2020), art. No. 108697.

[37]

Pei ZB, Cheng XQ, Yang XJ, et al. . Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors. J. Mater. Sci. Technol., 2021, 64: 214.

[38]

Jiménez-Come MJ, Turias IJ, Aguilar JJR. A two-stage model based on artificial neural networks to determine pitting corrosion status of 316L stainless steel. Corros. Rev., 2016, 34(1–2): 113.

[39]

Kamrunnahar M, Urquidi-Macdonald M. Prediction of corrosion behavior using neural network as a data mining tool. Corros. Sci., 2010, 52(3): 669.

[40]

Morizet N, Godin N, Tang J, Maillet E, Fregonese M, Normand B. Classification of acoustic emission signals using wavelets and Random Forests: Application to localized corrosion. Mech. Syst. Signal Process., 2016, 70: 1026.

[41]

R. Díaz-Uriarte and S. Alvarez de Andrés, Gene selection and classification of microarray data using random forest, BMC Bioinformatics, 7(2006), art. No. 3.

[42]

Zhang L, Wang LL, Zhang XD, Liu SR, Sun PS, Wang TL. The basic principle of random forest and its applications in Ecology: A case study of pinus yunnanensis. Acta Ecol. Sin., 2014, 34(3): 650

[43]

Liu ZY, Hao WK, Wu W, Luo H, Li XG. Fundamental investigation of stress corrosion cracking of E690 steel in simulated marine thin electrolyte layer. Corros. Sci., 2019, 148: 388.

[44]

Thee C, Hao L, Dong JH, et al. . Atmospheric corrosion monitoring of a weathering steel under an electrolyte film in cyclic wet-dry condition. Corros. Sci., 2014, 78: 130.

[45]

de la Fuente D, Díaz I, Simancas J, Chico B, Morcillo M. Long-term atmospheric corrosion of mild steel. Corros. Sci., 2011, 53(2): 604.

[46]

Wu HY, Lei HG, Chen YF, Qiao JY. Comparison on corrosion behaviour and mechanical properties of structural steel exposed between urban industrial atmosphere and laboratory simulated environment. Constr. Build. Mater., 2019, 211: 228.

[47]

Guo J, Yang SW, Shang CJ, Wang Y, He XL. Influence of carbon content and microstructure on corrosion behaviour of low alloy steels in a Cl containing environment. Corros. Sci., 2009, 51(2): 242.

[48]

W. Wu, Z.Y. Liu, Q.Y. Wang, and X.G. Li, Improving the resistance of high-strength steel to SCC in a SO2 polluted marine atmosphere through Nb and Sb microalloying, Corros. Sci., 170(2020), art. No. 108693.

[49]

H.X. Liu, F. Huang, W. Yuan, Q. Hu, J. Liu, and Y.F. Cheng, Essential role of element Si in corrosion resistance of a bridge steel in chloride atmosphere, Corros. Sci., 173(2020), art. No. 108758.

[50]

Wang Y, Mu X, Dong JH, Umoh AJ, Ke W. Insight in- to atmospheric corrosion evolution of mild steel in a simulated coastal atmosphere. J. Mater. Sci. Technol., 2021, 76: 41.

[51]

Y. Yang, X.Q. Cheng, J.B. Zhao, Y. Fan, and X.G. Li, A study of rust layer of low alloy structural steel containing 0.1% Sb in atmospheric environment of the Yellow Sea in China, Corros. Sci., 188(2021), art. No. 109549.

[52]

Yin CH, Zhang X, Wang SL, et al. . Corrosion behavior and mechanism of Cr and Cu alloy weathering steel in simulated marine atmospheric environment. J. Mater. Res. Technol., 2025, 35: 3098.

[53]

H. Chen, H.Y. Cui, Z.B. He, L. Lu, and Y.H. Huang, Influence of chloride deposition rate on rust layer protectiveness and corrosion severity of mild steel in tropical coastal atmosphere, Mater. Chem. Phys., 259(2021), art. No. 123971.

[54]

Ma YT, Li Y, Wang FH. Weatherability of 09CuPCrNi steel in a tropical marine environment. Corros. Sci., 2009, 51(8): 1725.

[55]

Melchers RE. Pitting corrosion of mild steel in marine immersion environment: Part 2: Variability of maximum pit depth. Corrosion, 2004, 60(10): 937.

[56]

Yang XJ, Yang Y, Sun MH, et al. . A new understanding of the effect of Cr on the corrosion resistance evolution of weathering steel based on big data technology. J. Mater. Sci. Technol., 2022, 104: 67.

[57]

Yang L, Yang XJ, Wang BQ, Wang ZF, Cheng XQ, Li XG. Corrosion resistance optimization of Sn-additional low-alloy high strength steel by data-driven identification and field exposure verification. J. Mater. Res. Technol., 2023, 25: 3624.

[58]

Wang ZF, Liu JR, Wu LX, Han RD, Sun YQ. Study of the corrosion behavior of weathering steels in atmospheric environments. Corros. Sci., 2013, 67: 1.

[59]

Y.F. Wang, J.G. Li, Q.F. Wang, and T.S. Wang, Some new discoveries on the structure of the rust layer of weathering steel in a simulated industrial atmosphere by STEM-EDS and HRTEM, Corros. Sci., 183(2021), art. No. 109322.

[60]

Sun MH, Yang XJ, Du CW, et al. . Distinct beneficial effect of Sn on the corrosion resistance of Cr–Mo low alloy steel. J. Mater. Sci. Technol., 2021, 81: 175.

[61]

W. Wu, Z.Y. Dai, Z.Y. Liu, C. Liu, and X.G. Li, Synergy of Cu and Sb to enhance the resistance of 3% Ni weathering steel to marine atmospheric corrosion, Corros. Sci., 183(2021), art. No. 109353.

[62]

Qu Q, Yan CW, Zhang L, Wan Y, Cao CN. Influence of NaCl deposition on atmospheric corrosion of A3 steel. J. Mater. Sci. Tech., 2002, 18(6): 552

[63]

Strehblow HHSSchmuki P, Lockwood DJ, Ogata YH, Isaacs HC. Mechanistic aspects of nucleation and growth of corrosion pits on metal. Proceedings of International Symposium on Pits and Pores II: Formation, Properties and significance for Advanced Materials, 200117

[64]

Lv WY, Wang ZY, Yu QC, Su W. Synergic effect of NaHSO3 and NaCl on atmospheric corrosion of Q235 steel. Corros. Sci. Prot. Technol., 2015, 27(6): 545

[65]

Li SX, Hihara LH. In situ Raman spectroscopic identification of rust formation in Evans’ droplet experiments. Electrochem. Commun., 2012, 18(1): 48.

[66]

Ma YT, Li Y, Wang FH. Corrosion of low carbon steel in atmospheric environments of different chloride content. Corros. Sci., 2009, 51(5): 997.

[67]

Misawa T. The thermodynamic consideration for Fe–H2O system at 25°C. Corros. Sci., 1973, 13(9): 659.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

/