A sustainable and high value-added strategy under lignite and waste silicon powder to construct SiC nanowires for electromagnetic wave absorption

Wenhao Wang , Xiaolin Lan , Haoquan Hao , Jingxiang Liu , Yong Shuai , Qinghe Jing , Shouqing Yan , Jie Guo , Zhijiang Wang

International Journal of Minerals, Metallurgy, and Materials ›› 2026, Vol. 33 ›› Issue (1) : 347 -356.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2026, Vol. 33 ›› Issue (1) :347 -356. DOI: 10.1007/s12613-025-3123-9
Research Article
research-article

A sustainable and high value-added strategy under lignite and waste silicon powder to construct SiC nanowires for electromagnetic wave absorption

Author information +
History +
PDF

Abstract

The electromagnetic wave absorption of silicon carbide nanowires is improved by their uniform and diverse cross-structures. This study introduces a sustainable and high value-added method for synthesizing silicon carbide nanowires using lignite and waste silicon powder as raw materials through carbothermal reduction. The staggered structure of nanowires promotes the creation of interfacial polarization, impedance matching, and multiple loss mechanisms, leading to enhanced electromagnetic absorption performance. The silicon carbide nanowires demonstrate outstanding electromagnetic absorption capabilities with the minimum reflection loss of −48.09 dB at 10.08 GHz and an effective absorption bandwidth (the reflection loss less than −10 dB) ranging from 8.54 to 16.68 GHz with a thickness of 2.17 mm. This research presents an innovative approach for utilizing solid waste in an environmentally friendly manner to produce broadband silicon carbide composite absorbers.

Keywords

lignite / waste silicon powder / SiC nanowires / electromagnetic wave absorption / high value-added

Cite this article

Download citation ▾
Wenhao Wang, Xiaolin Lan, Haoquan Hao, Jingxiang Liu, Yong Shuai, Qinghe Jing, Shouqing Yan, Jie Guo, Zhijiang Wang. A sustainable and high value-added strategy under lignite and waste silicon powder to construct SiC nanowires for electromagnetic wave absorption. International Journal of Minerals, Metallurgy, and Materials, 2026, 33(1): 347-356 DOI:10.1007/s12613-025-3123-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Dong, X.H. Zhang, X.T. Li, J.M. Chen, P. Hu, and J.C. Han, SiC whiskers-reduced graphene oxide composites decorated with MnO nanoparticles for tunable microwave absorption, Chem. Eng. J., 392(2020), art. No. 123817.

[2]

Q. Song, F. Ye, L. Kong, et al., Graphene and MXene nanomaterials: Toward high-performance electromagnetic wave absorption in gigahertz band range, Adv. Funct. Mater., 30(2020), No. 31, art. No. 2000475.

[3]

P.F. Bian, B.G. Zhan, P. Gao, et al., Investigation on the electromagnetic wave absorption properties of foamed cement-based materials, Constr. Build. Mater., 364(2023), art. No. 129903.

[4]

Y.X. Xie, Y.Y. Guo, T.T. Cheng, et al., Efficient electromagnetic wave absorption performances dominated by exchanged resonance of lightweight PC/Fe3O4@PDA hybrid nanocomposite, Chem. Eng. J., 457(2023), art. No. 141205.

[5]

Z.T. Luo, S.X. Feng, Y.P. Li, et al., Synthesis of conductive polyaniline composites for superior electromagnetic wave absorption with lightweight and broad bandwidth, Adv. Eng. Mater., 25(2023), No. 1, art. No. 2200976.

[6]

C.H. Sun, Q.Y. Li, Z.R. Jia, G.L. Wu, and P.F. Yin, Hierarchically flower-like structure assembled with porous nanosheet-supported MXene for ultrathin electromagnetic wave absorption, Chem. Eng. J., 454(2023), art. No. 140277.

[7]

Y.H. Zhang, Y. Li, H.J. Liu, et al., Biomass-derived heterogeneous RGO/Ni/C composite with hollow structure for high-efficiency electromagnetic wave absorption, Mater. Today Phys., 31(2023), art. No. 100966.

[8]

Song JB, Wang LS, Dong H, Yao JT. Long lifespan thermal barrier coatings overview: Materials, manufacturing, failure mechanisms, and multiscale structural design. Ceram. Int., 2023, 49(1): 1.

[9]

Akinay Y, Gunes U, Çolak B, Cetin T. Recent progress of electromagnetic wave absorbers: A systematic review and bibliometric approach. ChemPhysMater, 2023, 2(3): 197.

[10]

Han M, Yin X, Hou Z, et al. . Flexible and thermostable graphene/SiC nanowire foam composites with tunable electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces, 2017, 9(13): 11803.

[11]

Wang GZ, Gao Z, Wan GP, Lin SW, Yang P, Qin Y. High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res., 2014, 7(5): 704.

[12]

Zhang N, Huang Y, Zong M, Ding X, Li SP, Wang MY. Synthesis of ZnS quantum dots and CoFe2O4 nanoparticles co-loaded with graphene nanosheets as an efficient broad band EM wave absorber. Chem. Eng. J., 2017, 308: 214.

[13]

Wu RB, Zhou K, Yue CY, Wei J, Pan Y. Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog. Mater. Sci., 2015, 72: 1.

[14]

Wang YT, Han H, Bian HY, Li YJ, Lou ZC. Multi-interface structure design of bamboo-based carbon/Co/CoO composite electromagnetic wave absorber based on biomimetic honeycomb-shaped superstructure. Int. J. Miner. Metall. Mater., 2025, 32(3): 631.

[15]

Deng WB, Li TH, Li H, et al. . In situ construction of hierarchical core–shell SiCnws@SiO2–carbon foam hybrid composites with enhanced polarization loss for highly efficient electromagnetic wave absorption. Carbon, 2023, 202: 103.

[16]

Li X, Lu XK, Li MH, et al. . A SiC nanowires/Ba0.75Sr0.25Al2Si2O8 ceramic heterojunction for stable electromagnetic absorption under variable-temperature. J. Mater. Sci. Technol., 2022, 125: 29.

[17]

Z.N. Xiang, Y.Q. Wang, X.M. Yin, and Q.C. He, Microwave absorption performance of porous heterogeneous SiC/SiO2 microspheres, Chem. Eng. J., 451(2023), art. No. 138742.

[18]

Chen JP, Jia H, Liu Z, Kong QQ, et al. . Construction of C–Si heterojunction interface in SiC whisker/reduced graphene oxide aerogels for improving microwave absorption. Carbon, 2020, 164: 59.

[19]

Sun MX, Lv XL, Xie AM, Jiang WC, Wu F. Growing 3D ZnO nano-crystals on 1D SiC nanowires: Enhancement of dielectric properties and excellent electromagnetic absorption performance. J. Mater. Chem. C, 2016, 4(38): 8897.

[20]

Chen JH, Liu M, Yang T, Zhai FM, Hou XM, Chou KC. Improved microwave absorption performance of modified SiC in the 2–18 GHz frequency range. CrystEngComm, 2017, 19(3): 519.

[21]

Tian H, Liu HT, Cheng HF. Mechanical and microwave dielectric properties of KD-I SiCf/SiC composites fabricated through precursor infiltration and pyrolysis. Ceram. Int., 2014, 40(7): 9009.

[22]

Ye XL, Chen ZF, Ai SF, et al. . Enhanced electromagnetic absorption properties of novel 3D-CF/PyC modified by reticulated SiC coating. ACS Sustainable Chem. Eng., 2019, 7(13): 11386.

[23]

Li XT, Wei J, Chen B, et al. . Effective electromagnetic wave absorption and photoluminescence performances of flexible SiC nanowires membrane. Ceram. Int., 2021, 47(12): 17615.

[24]

J.Y. Wang, J.Q. Tao, J.T. Zhou, H. Van Zalinge, Z.J. Yao, and L. Yang, Synthesis mechanism of different morphological SiC and its electromagnetic absorption performance, Mater. Charact., 205(2023), art. No. 113328.

[25]

Gao H, Luo F, Wen QL, Duan SC, Zhou WC, Zhu DM. Influence of different matrices on the mechanical and microwave absorption properties of SiC fiber-reinforced oxide matrix composites. Ceram. Int., 2018, 44(6): 6010.

[26]

C.S. Wang, Q.C. Yang, X.G. Gu, et al., 3D in situ heterogeneous SiC/mullite hollow constructs for broadband electromagnetic absorption, Cell Rep. Phys. Sci., 5(2024), No. 2, art. No. 101813.

[27]

Zhang K, Wu F, Xie AM, Sun MX, Dong W. In situ stringing of metal organic frameworks by SiC nanowires for high-performance electromagnetic radiation elimination. ACS Appl. Mater. Interfaces, 2017, 9(38): 33041.

[28]

Li WF, Guo HS. A novel and green fabrication of 3C–SiC nanowires from coked rice husk-silicon mixture and their photoluminescence property. Mater. Lett., 2018, 215: 75.

[29]

B. Liu, Q. Yin, X.M. Chen, et al., Theoretical and experimental study of the mechanism for preparation of SiC nanowires by carbothermal reduction, J. Phys. Chem. Solids, 187(2024), art. No. 111886.

[30]

Yan LW, Hong CQ, Sun BQ, et al. . In situ growth of core–sheath heterostructural SiC nanowire arrays on carbon fibers and enhanced electromagnetic wave absorption performance. ACS Appl. Mater. Interfaces, 2017, 9(7): 6320.

[31]

X.L. Lan, Y.B. Li, and Z.J. Wang, High-temperature electromagnetic wave absorption, mechanical and thermal insulation properties of in situ grown SiC on porous SiC skeleton, Chem. Eng. J., 397(2020), art. No. 125250.

[32]

Qing YC, Zhou WC, Luo F, Zhu DM. Titanium carbide (MXene) nanosheets as promising microwave absorbers. Ceram. Int., 2016, 42(14): 16412.

[33]

Wen QL, Zhou WC, Wang YD, et al. . Enhanced microwave absorption of plasma-sprayed Ti3SiC2/glass composite coatings. J. Mater. Sci., 2017, 52(2): 832.

[34]

Wu F, Xie AM, Sun MX, Wang Y, Wang MY. Reduced graphene oxide (RGO) modified spongelike polypyrrole (PPy) aerogel for excellent electromagnetic absorption. J. Mater. Chem. A, 2015, 3(27): 14358.

[35]

Tao JQ, Jiao ZB, Xu LL, et al. . Construction of MOF-derived Co/C shell on carbon fiber surface to enhance multi-polarization effect towards efficient broadband electromagnetic wave absorption. Carbon, 2021, 184: 571.

[36]

Zhou JT, Tao JQ, Yao ZJ, Xu LL, Li Z, Chen P. Ag nanoparticles embedded in multishell carbon nanoparticles for microwave absorption. ACS Appl. Nano Mater., 2021, 4(5): 5425.

[37]

Shen ZJ, Peng HL, Xiong ZQ, et al. . Facile fabrication of Nd2O2S/C nanocomposite with enhanced microwave absorption induced by defects. J. Am. Ceram. Soc., 2022, 105(3): 2082.

[38]

Sun GB, Dong BX, Cao MH, Wei BQ, Hu CW. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3, and Fe with high performance of microwave absorption. Chem. Mater., 2011, 23(6): 1587.

[39]

H.L. Peng, X.J. Ma, C.B. Liu, C.W. Lei, X. Li, and Z.Q. Xiong, Facile fabrication of indium tin oxide/nanoporous carbon composites with excellent low-frequency microwave absorption, J. Alloy. Compd., 889(2021), art. No. 161636.

[40]

Jiao ZB, Huyan WJ, Yao JR, Yao ZJ, Zhou JT, Liu PJ. Heterogeneous ZnO@CF structures and their excellent microwave absorbing properties with thin thickness and low filling. J. Mater. Sci. Technol., 2022, 113: 166.

[41]

X.G. Liu, J.J. Jiang, D.Y. Geng, et al., Dual nonlinear dielectric resonance and strong natural resonance in Ni/ZnO nanocapsules, Appl. Phys. Lett., 94(2009), No. 5, art. No. 053119.

[42]

Lin X, Gong HY, Zhang YJ, et al. . Dielectric properties of porous SiC/Si3N4 ceramics by polysilazane immersion–pyrolysis. Prog. Nat. Sci. Mater. Int., 2019, 29(2): 184.

[43]

Shen ZJ, Liu CB, Yang HL, Xie Y, Zeng QW, Che RC. Fabrication of hollow cube dual-semiconductor Ln2O3/MnO/C nanocomposites with excellent microwave absorption performance. ACS Appl. Mater. Interfaces, 2021, 13(24): 28689.

[44]

Y. Li, F. Qin, D. Estevez, H. Wang, and H.X. Peng, Interface probing by dielectric frequency dispersion in carbon nanocomposites, Sci. Rep., 8(2018), No. 1, art. No. 14547.

[45]

Lin Y, Dai JJ, Yang HB, Wang L, Wang F. Graphene multilayered sheets assembled by porous Bi2Fe4O9 microspheres and the excellent electromagnetic wave absorption properties. Chem. Eng. J., 2018, 334: 1740.

[46]

Shu RW, Zhang GY, Wang X, et al. . Fabrication of 3D netlike MWCNTs/ZnFe2O4 hybrid composites as high-performance electromagnetic wave absorbers. Chem. Eng. J., 2018, 337: 242.

[47]

Zhang YL, Wang XX, Cao MS. Confinedly implanted NiFe2O4–rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res., 2018, 11(3): 1426.

[48]

Lan X, Hou Y, Dong X, et al. . All-ceramic SiC aerogel for wide temperature range electromagnetic wave attenuation. ACS Appl. Mater. Interfaces, 2022, 14(13): 15360.

[49]

J.Y. Wang, J.T. Zhou, H. Van Zalinge, Z.J. Yao, and L. Yang, Hollow SiC@MnO2 nanospheres with tunable core size and shell thickness for excellent electromagnetic wave absorption, Chem. Eng. J., 471(2023), art. No. 144769.

[50]

Zheng L, Zuo YF, Song DH, Li XG, Lou ZC, Wu YQ. Green strategy for a large-format, superhard, and insulated electromagnetic wave absorber inspired by a natural feature of a conch shell. ACS Nano, 2024, 18(43): 29457.

[51]

Y.X. Xia, W.W. Gao, and C. Gao, A review on graphene-based electromagnetic functional materials: Electromagnetic wave shielding and absorption, Adv. Funct. Mater., 32(2022), No. 42, art. No. 2204591.

[52]

Xu BK, He QC, Wang YQ, Yin XM. Hollow porous Ni@SiC nanospheres for enhancing electromagnetic wave absorption. Ceram. Int., 2023, 49(13): 21335.

[53]

H.L. Peng, X. Zhang, H.L. Yang, Z.Q. Xiong, C.B. Liu, and Y. Xie, Fabrication of core–shell nanoporous carbon@chiral polyschiff base iron(II) composites for high-performance electromagnetic wave attenuationin the low-frequency, J. Alloy. Compd., 850(2021), art. No. 156816.

[54]

L. He, Y.T. Yi, J.G. Zhang, et al., A four-narrowband terahertz tunable absorber with perfect absorption and high sensitivity, Mater. Res. Bull., 170(2024), art. No. 112572.

[55]

Hou Y, Cheng L, Zhang Y, et al. . Enhanced flexibility and microwave absorption properties of HfC/SiC nanofiber mats. ACS Appl. Mater. Interfaces, 2018, 10(35): 29876.

[56]

H.Q. Hao, Z. Wang, J.X. Liu, H.Y. Hao, and Z.J. Wang, Enhanced electromagnetic wave absorption in YAG-modified SiC foam, Mater. Sci. Eng. B, 304(2024), art. No. 117342.

[57]

Z. Wang, K.X. Yang, H. Wang, J.R. Zhao, and P.B. Liu, CNTs decorated Fe3O4/Co–Ni polyhedrons with heterogeneous interfaces for promoting microwave absorption, Compos. Commun., 49(2024), art. No. 101976.

[58]

Li WC, Li CS, Lin LH, Wang Y, Zhang JS. All-dielectric radar absorbing array metamaterial based on silicon carbide/carbon foam material. J. Alloy. Compd., 2019, 781: 883.

[59]

H.L. Lv, Z.H. Yang, P.L. Wang, et al., A voltage-boosting strategy enabling a low-frequency, flexible electromagnetic wave absorption device, Adv. Mater., 30(2018), No. 15, art. No. 1706343.

[60]

Peng CH, Chen PS, Chang CC. High-temperature microwave bilayer absorber based on lithium aluminum silicate/lithium aluminum silicate–SiC composite. Ceram. Int., 2014, 40(1): 47.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

PDF

26

Accesses

0

Citation

Detail

Sections
Recommended

/