Coupling effect of TiO2 and Al2O3 on the structure of CaO-SiO2-MgO-xwt%Al2O3-ywt%TiO2 slag systems

Mao Chen , Bo Yang , Kaixuan Zhang , Junyu Chen , Yehui Li , Shuangjiang He , Meilong Hu

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (10) : 2444 -2455.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (10) : 2444 -2455. DOI: 10.1007/s12613-025-3104-z
Research Article
research-article

Coupling effect of TiO2 and Al2O3 on the structure of CaO-SiO2-MgO-xwt%Al2O3-ywt%TiO2 slag systems

Author information +
History +
PDF

Abstract

This study analyzes the influence of TiO2 and Al2O3 contents on the microstructure of CaO-SiO2-MgO-xwt%Al2O3-ywt%TiO2 (14 ≤ x ≤ 22, 0 ≤ y ≤ 10) blast furnace slag systems based on the change of slag viscosity, Raman spectroscopy, and molecular dynamics. The Raman spectroscopy results indicate that an increase in TiO2 content leads to the gradual depolymerization of complex silicate structures (QSi3 and QSi2) into simpler structures (QSi0 and QSi1) in the slag. At the same time, the Al-O-Al bonds in the aluminate structures of the slag also depolymerize into simpler Al-O forms, resulting in a decrease in the degree of polymerization of both silicates and aluminates. In contrast, an increase in Al2O3 content generally results in an increased degree of polymerization for the silicates and aluminates. Molecular dynamics simulations of the polymerization and depolymerization processes in the microstructure of the blast furnace slag reveal that Si and Al mainly exist in tetrahedral [SiO4]4− and [AlO4]4−, while Ti mainly exists in the form of simple pentacoordinate [TiO5]6− and hexacoordinate [TiO6]8−. TiO2 exhibits basic properties in this system, whereas Al2O3 demonstrates acidic behavior. The addition of TiO2 introduces free oxide ions into the system, causing the bridging oxygens to break into non-bridging oxygens, leading to the depolymerization of complex structures QSi4 and QSi3, which simplifies the slag structure. On the other hand, an increase in Al2O3 content tends to capture or share the oxide ions within the system to form [AlO4]4−, resulting in the polymerization of free oxygens into non-bridging oxygens, which further polymerize into bridging oxygens and lead to the consolidation of simple structures QSi0 and QSi1, resulting in a more complex slag structure. Both Raman spectroscopy analysis and molecular dynamics simulation results indicate that the degree of polymerization of [SiO4]4− and [AlO4]4− in the slag network structure is a crucial factor determining the fluidity of the slag.

Keywords

aluminum oxide / titanium dioxide / blast furnace slag / structure / polymerization degree

Cite this article

Download citation ▾
Mao Chen, Bo Yang, Kaixuan Zhang, Junyu Chen, Yehui Li, Shuangjiang He, Meilong Hu. Coupling effect of TiO2 and Al2O3 on the structure of CaO-SiO2-MgO-xwt%Al2O3-ywt%TiO2 slag systems. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(10): 2444-2455 DOI:10.1007/s12613-025-3104-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xu RZ, Wang Z. Influence of Al2O3 on viscous behavior and structure characteristic of TiO2-bearing molten slags. Ceram. Int., 2024, 50(13): 24016.

[2]

Fan HL, Wang RX, Xu ZF, Duan HM, Chen DF. The effect of B2O3 on the structure and properties of titanium slag melt by molecular dynamics simulations. J. Mater. Res. Technol., 2021, 15: 1046.

[3]

Deng ZY, Zhang XM, Hao GG, Wei CX, Zhu MY. Dissolution behavior of Al2O3 inclusions into CaO-MgO-SiO2-Al2O3-TiO2 system ladle slags. Int. J. Miner. Metall. Mater., 2024, 31(5): 977.

[4]

Stebbins JF, Kroeker S, Keun Lee S, Kiczenski TJ. Quantification of five- and six-coordinated aluminum ions in aluminosilicate and fluoride-containing glasses by high-field, high-resolution 27Al NMR. J. Non Cryst. Solids, 2000, 275(1–2): 1

[5]

Yan ZM, Pang ZD, Lv XW, Qiu GB, Bai CG. Hysicochemical properties of high alumina blast furnace slag. The 9th International Symposium on High-Temperature Metallurgical Processing, 2018279.

[6]

Zhang SF, Zhang X, Liu W, Lv XW, Bai CG, Wang L. Relationship between structure and viscosity of CaO-SiO2-Al2O3-MgO-TiO2 slag. J. Non Cryst. Solids, 2014, 402: 214.

[7]

Gan L, Lai CB. A general viscosity model for molten blast furnace slag. Metall. Mater. Trans. B, 2014, 45(3): 875.

[8]

Ohno A, Ross HU. Optimum slag composition for the blast-furnace smelting of titaniferous ores. Can. Metall. Q., 1963, 2(3): 259.

[9]

Park H, Park JY, Kim GH, Sohn I. Effect of TiO2 on the viscosity and slag structure in blast furnace type slags. Steel Res. Int., 2012, 83(2): 150.

[10]

Sohn I, Wang WL, Matsuura H, Tsukihashi F, Min DJ. Influence of TiO2 on the viscous behavior of calcium silicate melts containing 17 wt% Al2O3 and 10 wt% MgO. ISIJ Int., 2012, 52(1): 158.

[11]

Yan ZM, Lv XW, He WC, Jian X. Effect of TiO2 on the liquid zone and apparent viscosity of SiO2-CaO-8wt%MgO-14wt%Al2O3 system. ISIJ Int., 2017, 57(1): 31.

[12]

Handfield G, Charette GG. Viscosity and structure of industrial high TiO2 slags. Can. Metall. Q., 1971, 10(3): 235.

[13]

Kato M, Minowa S. Relation between the viscosity and electrical conductivity of molten slag. ISIJ Int., 1969, 55(4): 260

[14]

Pang ZD, Lv XW, Jiang YY, Ling JW, Yan ZM. Blast furnace ironmaking process with super-high TiO2 in the slag: Viscosity and melting properties of the slag. Metall. Mater. Trans. B, 2020, 51(2): 722.

[15]

Matsui M. Molecular dynamics study of the structures and bulk moduli of crystals in the system CaO-MgO-Al2O3-SiO2. Phys. Chem. Miner., 1996, 23(6): 345.

[16]

H.E. Xie, W.Z. Yu, Z.X. You, X.W. Lv, and C.G. Bai, The effect of titanium carbonitride on the viscosity of high-titanium-type blast furnace slag, Metals, 9(2019), No. 4, art. No. 395.

[17]

Zhen YL, Zhang GH, Chou KC. Viscosity of CaO-MgO-Al2O3-SiO2-TiO2 melts containing TiC particles. Metall. Mater. Trans. B, 2015, 46(1): 155.

[18]

Kim GH, Sohn I. Effect of Al2O3 on the viscosity and structure of calcium silicate-based melts containing Na2O and CaF2. J. Non Cryst. Solids, 2012, 358(12–13): 1530.

[19]

Xu CY, Wang C, Xu RZ, Zhang JL, Jiao KX. Effect of Al2O3 on the viscosity of CaO-SiO2-Al2O3-MgO-Cr2O3 slags. Int. J. Miner. Metall. Mater., 2021, 28(5): 797.

[20]

Chen BX, Hou J, You Y. et al.. Effects of Al2O3 content on the properties of BF slag and suitable fluxing regime for BF ironmaking with high Al2O3 content. Can. Metall. Q., 2023, 62(3): 617.

[21]

Yan Z, Lv X, Zhang J, Qin Y, Bai C. Influence of MgO, Al2O3 and CaO/SiO2 on the viscosity of blast furnace type slag with high Al2O3 and 5 wt% TiO2. Can. Metall. Q., 2016, 55(2): 186.

[22]

Mysen BO, Virgo D, Kushiro I. The structural role of aluminum in silicate melts—A Raman spectroscopic study at 1 atmosphere. Am. Mineral., 1981, 66: 678

[23]

Mysen BO, Virgo D, Scarfe C. Relations between the anion structure and viscosity of silicate melts—A Raman spectroscopic study. Am. Mineral., 1980, 65: 690

[24]

Mysen BO, Virgo D. Trace element partitioning and melt structure: An experimental study at 1 atm pressure. Geochim. Cosmochim. Acta, 1980, 44(12): 1917.

[25]

Mysen BO, Finger LW, Virgo D, Seifert FA. Curve-fitting of Raman spectra of silicate glasses. Am. Mineral., 1982, 67(7–8): 686

[26]

Mysen BO. Olivine/melt transition metal partitioning, melt composition, and melt structure-Influence of Al3+ for Si4+ substitution in the tetrahedral network of silicate melts. Geochim. Cosmochim. Ac., 2007, 71(22): 5500.

[27]

Mysen BO, Virgo D, Scarfe CM, Cronin DJ. Viscosity and structure of iron- and aluminum-bearing calcium silicate melts at 1 atm. Am. Mineral., 1985, 70: 487

[28]

McMillan P, Piriou B, Navrotsky A. A Raman spectroscopic study of glasses along the joins silica-calcium aluminate, silica-sodium aluminate, and silica-potassium aluminate. Geochim. Cosmochim. Acta, 1982, 46(11): 2021.

[29]

McMillan P, Piriou B. Raman spectroscopy of calcium aluminate glasses and crystals. J. Non Cryst. Solids, 1983, 55(2): 221.

[30]

Poe BT, McMillan PF, Coté B, Massiot D, Coutures JP. Structure and dynamics in calcium aluminate liquids: High-temperature 27Al NMR and Raman spectroscopy. J. Am. Ceram. Soc., 1994, 77(7): 1832.

[31]

Sun YQ, Wang H, Zhang ZT. Understanding the relationship between structure and thermophysical properties of CaO-SiO2-MgO-Al2O3 molten slags. Metall. Mater. Trans. B, 2018, 49: 677.

[32]

Wu T, He SP, Liang YJ, Wang Q. Molecular dynamics simulation of the structure and properties for the CaO-SiO2 and CaO-Al2O3 systems. J. Non Cryst. Solids, 2015, 411: 145.

[33]

S. Zhang, Y. Hou, J. Guo, H.H. Zhou, and X.W. Lv, Flowability and structural evolution of CaO-SiO2-MgO-Al2O3 slag with varying MgO/CaO ratios: Experiments and MD simulations, J. Non Cryst. Solids, 634(2024), art. No. 122979.

[34]

Mott NF. The viscosity of vitreous silicon dioxide. Phllos. Mag. B, 1987, 56(2): 257.

[35]

Hou Y, Zhang S, Dang J, Guo J, Zhou HH, XW. Viscosity and structure relationship with equimolar substitution of CaO with MgO in the CaO-MgO-Al2O3-SiO2 slag melts. Int. J. Miner. Metall. Mater., 2025, 32(1): 70.

[36]

Zhao YF, Li ZY, Li SJ, Song WL, Jiao SQ. A review of in situ high-temperature characterizations for understanding the processes in metallurgical engineering. Int. J. Miner. Metall. Mater., 2024, 31(11): 2327.

[37]

Welch RS, Lee KH, Wilkinson CJ, Ono M, Bragatto CB, Mauro JC. Topological hardening through oxygen triclusters in calcium aluminosilicate glasses. J. Am. Ceram. Soc., 2021, 104(12): 6183.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/