Exploring the optoelectronic properties of calcium vanadate semiconductors: A combined experimental and DFT study

Xin Jin , Xianyong Ding , Guishang Pei , Shuaiqi Li , Xing’an Dong , Xiaolong Yang , Rui Wang , Peng Yu , Xuewei Lü

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (6) : 1417 -1426.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (6) : 1417 -1426. DOI: 10.1007/s12613-025-3095-9
Research Article

Exploring the optoelectronic properties of calcium vanadate semiconductors: A combined experimental and DFT study

Author information +
History +
PDF

Abstract

Metal vanadates garner significant interest because of their exceptional potential for use in diverse practical applications, which stems from their unique framework structures, bond strength heterogeneities, and strong O2−–V5+ charge-transfer bands. However, their optoelectronic properties have not yet been sufficiently explored. In this study, we synthesized three high-purity calcium vanadate compounds (CaV2O6, Ca2V2O7, and Ca3V2O8) and comprehensively investigated their optoelectronic properties via first-principles calculations and experimental characterizations. CaV2O6, Ca2V2O7, and Ca3V2O8 are indirect band gap semiconductors with band gaps of 2.5–3.4 eV. A comparative analysis between density functional theory (DFT) and DFT + U (local Coulomb interaction, U) calculations revealed that standard DFT was sufficient to accurately describe the lattice parameters and band gaps of these vanadates. Further luminescence studies revealed significant photo- and electro-luminescence properties within the visible light spectrum. Notably, the luminescence intensity of CaV2O6 exhibited a remarkable 10-fold enhancement under a modest pressure of only 0.88 GPa, underscoring its exceptional potential for use in pressure-tunable optical applications. These findings provide deeper insight into the electronic structures and optical behaviors of vanadates and highlight their potential as strong candidates for application in phosphor materials and optoelectronic devices.

Keywords

calcium vanadate / electronic structure / optical property / high-pressure luminescence / first-principles calculations / Engineering / Materials Engineering

Cite this article

Download citation ▾
Xin Jin, Xianyong Ding, Guishang Pei, Shuaiqi Li, Xing’an Dong, Xiaolong Yang, Rui Wang, Peng Yu, Xuewei Lü. Exploring the optoelectronic properties of calcium vanadate semiconductors: A combined experimental and DFT study. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(6): 1417-1426 DOI:10.1007/s12613-025-3095-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

LeeMJ, HanJ, LeeK, et al. . Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature, 2022, 6017892217.

[2]

A. VahidMohammadi, J. Rosen, and Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes), Science, 372(2021), No. 6547, art. No. eabf1581.

[3]

T. Yang, D.Z. Jia, B. Xu, et al., Textured CsPbI3 nanorods composite fibers for stable high output piezoelectric energy harvester, eScience, 4(2024), No. 5, art. No. 100273.

[4]

L.L. Zhou, T. Yang, Z. Fang, et al., Boosting of water splitting using the chemical energy simultaneously harvested from light, kinetic energy and electrical energy using N doped 4H-SiC nanohole arrays, Nano Energy, 104(2022), art. No. 107876.

[5]

X. Jin, D.S. Ma, P. Yu, et al., Strain-driven phonon topological phase transition impedes thermal transport in titanium monoxide, Cell Rep. Phys. Sci., 5(2024), No. 4, art. No. 101895.

[6]

D. Errandonea, S.G. MacLeod, L. Burakovsky, et al., Melting curve and phase diagram of vanadium under high-pressure and high-temperature conditions, Phys. Rev. B, 100(2019), No. 9, art. No. 094111.

[7]

M.G. Stevenson, E.J. Pace, C.V. Storm, et al., Pressure-induced bcc-rhombohedral phase transition in vanadium metal, Phys. Rev. B, 103(2021), No. 13, art. No. 134103.

[8]

X. Jin, Q.L. Ou, H.R. Wei, et al., Anomalous thermal transport and high thermoelectric performance of Cu-based vanadate Cu-VO3, Appl. Phys. Lett., 124(2024), No. 17, art. No. 172203.

[9]

YangJX, WangXD, CaiYR, YangXY. Corrosion resistance and electrical conductivity of V/Ce conversion coating on magnesium alloy AZ31B. Int. J. Miner. Metall. Mater., 2023, 304653.

[10]

HuyerG, LiuS, KellyJ, et al. . Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J. Biol. Chem., 1997, 2722843.

[11]

X. Jin, M.L. Yuan, H.R. Wei, et al., Lattice dynamic and anomalous thermal transport of calcium sodium vanadates, Int. J. Heat Mass Transf., 231(2024), art. No. 125884.

[12]

ParkY, McDonaldKJ, ChoiKS. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev., 2013, 4262321.

[13]

WenJ, SunHY, JiangT, ChenBJ, LiFF, LiuMX. Comparison of the interface reaction behaviors of CaO–V2O5 and MnO2–V2O5 solid-state systems based on the diffusion couple method. Int. J. Miner. Metall. Mater., 2023, 305834.

[14]

XiaDW, GaoHP, LiMQ, GongF, LiM. Transition metal vanadates electrodes in lithium-ion batteries: A holistic review. Energy Storage Mater., 2021, 35: 169.

[15]

F. Wan, L.L. Zhang, X. Dai, X.Y. Wang, Z.Q. Niu, and J. Chen, Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers, Nat. Commun., 9(2018), No. 1, art. No. 1656.

[16]

S. Hartung, N. Bucher, J.B. Franklin, et al., Mechanism of Na+ insertion in alkali vanadates and its influence on battery performance, Adv. Energy Mater., 6(2016), No. 9, art. No. 1502336.

[17]

JinX, DingXY, ZhanFY, et al. . Bonding heterogeneity leads to hierarchical and ultralow lattice thermal conductivity in sodium metavanadate. J. Phys. Chem. Lett., 2022, 134811160.

[18]

LiuY, MaB, Y, WangC, ChenY. A review of lithium extraction from natural resources. Int. J. Miner. Metall. Mater., 2023, 302209.

[19]

RoutrayK, ZhouW, KielyCJ, WachsIE. Catalysis science of methanol oxidation over iron vanadate catalysts: Nature of the catalytic active sites. ACS Catal., 2011, 1154.

[20]

XuH, LiHM, SunGS, et al. . Photocatalytic activity of La2O3-modified silver vanadates catalyst for Rhodamine B dye degradation under visible light irradiation. Chem. Eng. J., 2010, 160133.

[21]

ChenF, YangQ, WangYL, et al. . Efficient construction of bismuth vanadate-based Z-scheme photocatalyst for simultaneous Cr(VI) reduction and ciprofloxacin oxidation under visible light: Kinetics, degradation pathways and mechanism. Chem. Eng. J., 2018, 348: 157.

[22]

FanHM, WangDJ, WangLL, et al. . Hydrothermal synthesis and photoelectric properties of BiVO4 with different morphologies: An efficient visible-light photocatalyst. Appl. Surf. Sci., 2011, 257177758.

[23]

KokulnathanT, AlmutairiG, ChenSM, et al. . Construction of lanthanum vanadate/functionalized boron nitride nanocomposite: The electrochemical sensor for monitoring of furazolidone. ACS Sustainable Chem. Eng., 2021, 972784.

[24]

MonsefR, Salavati-NiasariM. Electrochemical sensor based on a chitosan-molybdenum vanadate nanocomposite for detection of hydroxychloroquine in biological samples. J. Colloid Interface Sci., 2022, 613: 1.

[25]

GhoshA. Temperature-dependent thermoelectric power of semiconducting bismuth-vanadate glass. J. Appl. Phys., 1989, 651227.

[26]

D. Souri, Seebeck coefficient of tellurite–vanadate glasses containing molybdenum, J. Phys. D, 41(2008), No. 10, art. No. 105102.

[27]

XiangJY, WangX, PeiGS, HuangQY, XW. Solid-state reaction of a CaO–V2O5 mixture: A fundamental study for the vanadium extraction process. Int. J. Miner. Metall. Mater., 2021, 2891462.

[28]

BoulouxJC, GalyJ. Structure cristalline de l’hypovanadate CaV4O9. Acta Crystallogr. Sect. B, 1973, 2961335.

[29]

JinX, PeiGS, JiaoMJ, et al. . Bonding inhomogeneity and strong anharmonicity induce ultralow lattice thermal conductivity in calcium pyrovanadate. J. Phys. Chem. C, 2022, 1263816492.

[30]

LiangPH, ZhuKJ, RaoY, et al. . Hydrated calcium vanadate nanoribbons with a stable structure and fast ion diffusion as a cathode for quasi-solid-state zinc-ion batteries. ACS Appl. Mater. Interfaces, 2024, 161924723.

[31]

JinX, DingXY, QinZ, et al. . Comprehensive study of electronic, optical, and thermophysical properties of metavanadates CaV2O6 and MgV2O6. Inorg. Chem., 2022, 614417623.

[32]

ZhouWJ, ChenMF, WangAR, et al. . Optimizing the electrolyte salt of aqueous zinc-ion batteries based on a high-performance calcium vanadate hydrate cathode material. J. Energy Chem., 2021, 52: 377.

[33]

ZhangSY, WangK, HouZH, et al. . Calcium vanadate micro/nanostructures for lithium-ion batteries. ACS Appl. Nano Mater., 2022, 5912826.

[34]

Y.D. Tang, H.Y. Zhang, S.S. Zhang, et al., High performance anode for sodium-ion batteries: Calcium pre-intercalated layered vanadium oxide/carbon composite, Chem. Eng. J., 424(2021), art. No. 130378.

[35]

H. Kaur and M. Jayasimhadri, Spectroscopic and color tunable studies in Dy3+/Eu3+co-doped calcium–bismuth–vanadate phosphor for lighting applications, Solid State Sci., 122(2021), art. No. 106776.

[36]

ZhangSY, MuW. Fabrication of Ca2V2O7 microspheres and its application in lithium-ion batteries. Mater. Lett., 2016, 183: 311.

[37]

ThiagarajanK, TheerthagiriJ, SenthilRA, MadhavanJ. Simple and low cost electrode material based on Ca2V2O7/PANI nanoplatelets for supercapacitor applications. J. Mater. Sci., 2017, 28: 17354

[38]

YuRJ, XueN, HuoSD, LiJB, WangJY. Structure characteristics and photoactivity of simultaneous luminescence and photocatalysis in CaV2O6 nanorods synthesized by the sol–gel Pechini method. RSC Adv., 2015, 57863502.

[39]

KaurP, KhannaA. Structural, electrical and luminescence properties of M2V2O7 (M = Mg, Ca, Sr, Ba, Zn). J. Mater. Sci., 2021, 32: 21813

[40]

S.S. Parab and A.V. Salker, Structural and optical properties of Tb and Na–Tb co-doped Ca3V2O8 phosphors prepared by sol–gel process, Mater. Res. Express, 5(2018), No. 1, art. No. 016302.

[41]

KresseG, HafnerJ. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B, 1993, 481713115.

[42]

KresseG, FurthmüllerJ. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 1996, 541611169.

[43]

J.P. Perdew, A. Ruzsinszky, G.I. Csonka, et al., Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett., 100(2008), No. 13, art. No. 136406.

[44]

D. Le, A. Kara, E. Schröder, P. Hyldgaard, and T.S. Rahman, Physisorption of nucleobases on graphene: A comparative van der waals study, J. Phys. Condens. Matter, 24(2012), No. 42, art. No. 424210.

[45]

MonkhorstHJ, PackJD. Special points for Brillouin-zone integrations. Phys. Rev. B, 1976, 13125188.

[46]

BoulouxJC, PerezG, GalyJ. Structure cristalline des métavanadates CaV2O6 et CdV2O6α. La transformation polymorphique CdV2O6α ⇄ CdV2O6β. Bull. Soc. fr. Minéral. Cristallogr., 1972, 951130

[47]

V.K. Trunov, Y.A. Velikodnyi, E.V. Murashova, and V.D. Zhuravlev, Crystal structure of calcium pyrovanadate, Sov. Phys. Dokl., 28(1983), art. No. 425.

[48]

GopalR, CalvoC. The structure of Ca3(VO4)2. Z. Für Kristallogr. Cryst. Mater., 1973, 1371–667.

[49]

DuttaDP, RamakrishnanM, RoyM, KumarA. Effect of transition metal doping on the photocatalytic properties of FeVO4 nanoparticles. J. Photochem. Photobiol. A, 2017, 335: 102.

[50]

X. Jin, R. Wang, Y.Y. Zhou, et al., A comprehensive experimental and first-principles study on magnesium–vanadium oxides, J. Alloy. Compd., 896(2022), art. No. 162862.

[51]

K. Latimer, S. Dwaraknath, K. Mathew, D. Winston, and K.A. Persson, Evaluation of thermodynamic equations of state across chemistry and structure in the materials project, NPJ Comput. Mater., 4(2018), art. No. 40.

[52]

Sánchez-MartínJ, ErrandoneaD, MosaferHSR, et al. . The pressure and temperature evolution of the Ca3V2O8 crystal structure using powder X-ray diffraction. CrystEngComm, 2023, 2581240.

[53]

GrzechnikA, McMillanPF. High-pressure X-ray diffraction of Sr3(VO4)2 and Ba3(VO4)2. Physica B, 1998, 2524268.

[54]

ZhangPJ, BotellaP, BuraN, et al. . High-pressure phase transition and amorphization of BaV2O6. Dalton Trans., 2025, 5452011.

[55]

GargAB, VieD, Rodriguez-HernandezP, MuñozA, SeguraA, ErrandoneaD. Accurate determination of the bandgap energy of the rare-earth niobate series. J. Phys. Chem. Lett., 2023, 1471762.

[56]

M.S. Islam, H. Kabir, Y. Inagaki, and A.R. Sarker, Comparative study of the conductivity of synthesized bivalent vanadates CaV2O6 and MnV2O6, J. Alloy. Compd., 829(2020), art. No. 154499.

[57]

SharmaA, VarshneyM, ChaeKH, WonSO. Electronic structure and luminescence assets in white-light emitting Ca2V2O7, Sr2V2O7 and Ba2V2O7 pyro-vanadates: X-ray absorption spectroscopy investigations. RSC Adv., 2018, 84626423.

[58]

ParhiP, ManivannanV, KohliS, McCurdyP. Synthesis and characterization of M3V2O8 (M = Ca, Sr and Ba) by a solid-state metathesis approach. Bull. Mater. Sci., 2008, 316885.

[59]

T. Ouahrani, R.M. Boufatah, M. Benaissa, Á. Morales-García, M. Badawi, and D. Errandonea, Effect of intrinsic point defects on the catalytic and electronic properties of Cu2WS4 single layer: Ab initio calculations, Phys. Rev. Mater., 7(2023), No. 2, art. No. 025403.

[60]

Y. Xue, T. Yang, E.H. Wang, et al., Unveiling the contribution of piezoelectric and ferroelectric effect to inorganic halide perovskites photodetectors, Nano Energy, 125(2024), art. No. 109491.

[61]

D.J. Carrascal, J. Ferrer, J.C. Smith, and K. Burke, The Hubbard dimer: A density functional case study of a many-body problem, J. Phys. Condens. Matter, 27(2015), No. 39, art. No. 393001.

[62]

H.T. Dang, J. Mravlje, A. Georges, and A.J. Millis, Electronic correlations, magnetism, and Hund’s rule coupling in the ruthenium perovskites SrRuO3 and CaRuO3, Phys. Rev. B, 91(2015), No. 19, art. No. 195149.

[63]

N.X. Yang, M.L. Yuan, J.L. Yang, et al., Ab initio investigation of the thermophysical properties of barium orthovanadate, J. Am. Ceram. Soc., 108(2025), No. 4, art. No. e20322.

[64]

ErrandoneaD, GargAB. Recent progress on the characterization of the high-pressure behaviour of AVO4 orthovanadates. Prog. Mater. Sci., 2018, 97: 123.

[65]

V. Wang, N. Xu, J.C. Liu, G. Tang, and W.T. Geng, VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code, Comput. Phys. Commun., 267(2021), art. No. 108033.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

184

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/