Effect of low Zn content on corrosion resistance and biocompatibility of biodegradable Mg-Zn-Y-Zr alloys

Xinyi Zhou , Jun Cheng , Jun Xu , Yipei Mao , Yang Dong , Yixuan He , Meifeng He

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (10) : 2534 -2546.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (10) : 2534 -2546. DOI: 10.1007/s12613-025-3092-z
Research Article
research-article

Effect of low Zn content on corrosion resistance and biocompatibility of biodegradable Mg-Zn-Y-Zr alloys

Author information +
History +
PDF

Abstract

Although the degradability and biosafety of magnesium alloys make them advantageous for biological applications, medical implants made of magnesium alloys often fail prematurely due to corrosion. Therefore, improving the corrosion resistance of magnesium alloys has become an urgent problem in the alloy design process. In this study, we designed and prepared Mg-xZn-0.5Y-0.5Zr (x = 1, 2, and 3, wt%) alloys in a hot extruded state and analyzed their surface structure through scanning electron microscopy, energy dispersion spectrometry, and X-ray diffraction. It was found that increasing the Zn content refined the recrystallized grains in the alloy. Particularly in Mg-3Zn-0.5Y-0.5Zr, the I phase became finer, forming both granular and nanoscale needle-like particles. Surface characterization after the immersion experiment showed that the corrosion product layer was mainly composed of Mg(OH)2, Zn(OH)2, CaCO3, and hydroxyapatite. The degradation rate of ZW305K was the lowest, measured as 4.1 and 6.0 mm·a−1 with the hydrogen precipitation method and weight loss method respectively. Electrochemical experiments further explained the corrosion circuit model of the alloy in solution and confirmed the earlier results. The maximum polarization resistance of ZW305K was 874.5 Ω·cm2, and the lowest corrosion current density was 0.104 mA·cm−2. As a biomedical alloy, it must exhibit good biocompatibility, so the alloy was also tested through cytotoxicity, cell adhesion, and staining experiments. The cell viability of each group after 48 h was greater than 80%, showing that the addition of zinc enhances the alloy’s biocompatibility. In summary, the prepared alloys have the potential to be used as biodegradable implant materials.

Keywords

Mg-Zn-Y-Zr alloys / corrosion resistance / microstructure / hot extrusion / biocompatibility

Cite this article

Download citation ▾
Xinyi Zhou, Jun Cheng, Jun Xu, Yipei Mao, Yang Dong, Yixuan He, Meifeng He. Effect of low Zn content on corrosion resistance and biocompatibility of biodegradable Mg-Zn-Y-Zr alloys. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(10): 2534-2546 DOI:10.1007/s12613-025-3092-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amukarimi S, Mozafari M. Biodegradable magnesium-based biomaterials: An overview of challenges and opportunities. MedComm, 2021, 2(2): 123.

[2]

Li X, Liu XM, Wu SL, Yeung KWK, Zheng YF, Chu PK. Design of magnesium alloys with controllable degradation for biomedical implants: From bulk to surface. Acta Biomater., 2016, 45: 2.

[3]

Zhao DW, Witte F, Lu FQ, Wang JL, Li JL, Qin L. Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective. Biomaterials, 2017, 112: 287.

[4]

W.T. Li, W. Qiao, X. Liu, et al., Biomimicking bone-implant interface facilitates the bioadaption of a new degradable magnesium alloy to the bone tissue microenvironment, Adv. Sci., 8(2021), No. 23, art. No. 2102035.

[5]

S. Lesz, B. Hrapkowicz, M. Karolus, and K. Gołombek, Characteristics of the Mg-Zn-Ca-Gd alloy after mechanical alloying, Materials, 14(2021), No. 1, art. No. 226.

[6]

Sheng K, Li WK, Du PH. et al.. Shortening the manufacturing process of degradable magnesium alloy minitube for vascular stents by introducing cyclic extrusion compression. J. Magnes. Alloys, 2024, 12(8): 3204.

[7]

Su JL, Teng J, Xu ZL, Li Y. Biodegradable magnesium-matrix composites: A review. Int. J. Miner. Metall. Mater., 2020, 27(6): 724.

[8]

Zhang SX, Zhang XN, Zhao CL. et al.. Research on an Mg-Zn alloy as a degradable biomaterial. Acta Biomater., 2010, 6(2): 626.

[9]

Chang JW, Duo J, Xiang YZ, Yang HY, Ding WJ, Peng YH. Influence of Nd and Y additions on the corrosion behaviour of extruded Mg-Zn-Zr alloys. Int. J. Miner. Metall. Mater., 2011, 18(2): 203.

[10]

Koltygin AV, Bazhenov VE, Plisetskaya IV. et al.. Influence of Zr and Mn additions on microstructure and properties of Mg-2.5wt%Cu-Xwt%Zn (X = 2.5, 5 and 6.5) alloys. Int. J. Miner. Metall. Mater., 2022, 29(9): 1733.

[11]

Wen K, Xiong BQ, Zhang YA. et al.. Aging precipitation characteristics and tensile properties of Al-Zn-Mg-Cu alloys with different additional Zn contents. Rare Met., 2021, 40(8): 2160.

[12]

Koltygin AV, Bazhenov VE, Khasenova RS, Komissarov AA, Bazlov AI, Bautin VA. Effects of small additions of Zn on the microstructure, mechanical properties and corrosion resistance of WE43B Mg alloys. Int. J. Miner. Metall. Mater., 2019, 26(7): 858.

[13]

Wang D, Ma C, Liu JY. et al.. Corrosion resistance and antisoiling performance of micro-arcoxidation/graphene oxide/stearic acid superhydrophobic composite coating on magnesium alloys. Int. J. Miner. Metall. Mater., 2023, 30(6): 1128.

[14]

Ma JR, Lu XP, Sah SP, Chen QQ, Zhang Y, Wang FH. Enhancing corrosion resistance of plasma electrolytic oxidation coatings on AM50 Mg alloy by inhibitor containing Ba(NO3)2 solutions. Int. J. Miner. Metall. Mater., 2024, 31(9): 2048.

[15]

Saran D, Kumar A, Bathula S, Klaumünzer D, Sahu KK. Review on the phosphate-based conversion coatings of magnesium and its alloys. Int. J. Miner. Metall. Mater., 2022, 29(7): 1435.

[16]

Han J, Wang C, Song YM, Liu ZY, Sun JP, Zhao JY. Simultaneously improving mechanical properties and corrosion resistance of as-cast AZ91 Mg alloy by ultrasonic surface rolling. Int. J. Miner. Metall. Mater., 2022, 29(8): 1551.

[17]

Y. Liu, Y.F. Zheng, X.H. Chen, et al., Fundamental theory of biodegradable metals: Definition, criteria, and design, Adv. Funct. Mater., 29(2019), No. 18, art. No. 1805402.

[18]

Chasapis CT, Ntoupa PA, Spiliopoulou CA, Stefanidou ME. Recent aspects of the effects of zinc on human health. Arch. Toxicol., 2020, 94(5): 1443.

[19]

Liu MY, Wang JF, Zhu SJ. et al.. Corrosion fatigue of the extruded Mg-Zn-Y-Nd alloy in simulated body fluid. J. Magnes. Alloys, 2020, 8(1): 231.

[20]

Li HX, Qin SK, Ma YZ, Wang J, Liu YJ, Zhang JS. Effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg-Zn-Ca alloys. Int. J. Miner. Metall. Mater., 2018, 25(7): 800.

[21]

Wang WH, Zhang XY, Zhang AK. et al.. High-performance Mg-Zn alloy achieved by the ultrafine grain and nanoparticle design. Bioact. Mater., 2024, 41: 371

[22]

Y.Y. Chen, T. Ying, Y. Yang, J.Y. Wang, and X.Q. Zeng, Regulating corrosion resistance of Mg alloys via promoting precipitation with trace Zr alloying, Corros. Sci., 216(2023), art. No. 111106.

[23]

Shi L, Yan Y, Shao CS, Yu K, Zhang B, Chen LJ. The influence of yttrium and manganese additions on the degradation and biocompatibility of magnesium-zinc-based alloys: In vitro and in vivo studies. J. Magnes. Alloys, 2024, 12(2): 608.

[24]

J.H. Li, Y.B. Zhang, M.J. Li, Y.F. Hu, Q. Zeng, and P. Zhang, Effect of combined addition of Zr, Ti and Y on microstructure and tensile properties of an Al-Zn-Mg-Cu alloy, Mater. Des., 223(2022), art. No. 111129.

[25]

Qi MF, Wei LY, Xu YZ. et al.. Effect of trace yttrium on the microstructure, mechanical property and corrosion behavior of homogenized Mg-2Zn-0.1Mn-0.3Ca-xY biological magnesium alloy. Int. J. Miner. Metall. Mater., 2022, 29(9): 1746.

[26]

Jin S, Zhang D, Lu XP. et al.. Mechanical properties, biodegradability and cytocompatibility of biodegradable Mg-Zn-Zr-Nd/Y alloys. J. Mater. Sci. Technol., 2020, 47: 190.

[27]

Li FX, Guo PS, Han SB. et al.. A novel magnesium alloy with enhanced mechanical property, degradation behavior and cytocompatibility. Mater. Lett., 2019, 244: 70.

[28]

Jafari H, Tehrani AHM, Heydari M. Effect of extrusion process on microstructure and mechanical and corrosion properties of biodegradable Mg-5Zn-1.5Y magnesium alloy. Int. J. Miner. Metall. Mater., 2022, 29(3): 490.

[29]

Zerankeshi MM, Alizadeh R, Gerashi E, Asadollahi M, Langdon TG. Effects of heat treatment on the corrosion behavior and mechanical properties of biodegradable Mg alloys. J. Magnes. Alloys, 2022, 10(7): 1737.

[30]

Chen JX, Tan LL, Yu XM, Yang K. Effect of minor content of Gd on the mechanical and degradable properties of as-cast Mg-2Zn-xGd-0.5Zr alloys. J. Mater. Sci. Technol., 2019, 35(4): 503.

[31]

Shi ZM, Atrens A. An innovative specimen configuration for the study of Mg corrosion. Corros. Sci., 2011, 53(1): 226.

[32]

Bollen LS. New trends in biological evaluation of medical devices. Med. Device Technol., 2005, 16(5): 10

[33]

Wang JL, Witte F, Xi TF. et al.. Recommendation for modifying current cytotoxicity testing standards for biodegradable magnesium-based materials. Acta Biomater., 2015, 21: 237.

[34]

Golub EE, Harrison G, Taylor AG, Camper S, Shapiro IM. The role of alkaline phosphatase in cartilage mineralization. Bone Miner., 1992, 17(2): 273.

[35]

Zhang EL, He WW, Du H, Yang K. Microstructure, mechanical properties and corrosion properties of Mg-Zn-Y alloys with low Zn content. Mater. Sci. Eng. A, 2008, 488(1–2): 102.

[36]

E.J.F. Dickinson and A.J. Wain, The Butler-Volmer equation in electrochemical theory: Origins, value, and practical application, J. Electroanal. Chem., 872(2020), art. No. 114145.

[37]

Wang BJ, Xu DK, Wang SD, Sheng LY, Zeng RC, Han EH. Influence of solution treatment on the corrosion fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy. Int. J. Fatigue, 2019, 120: 46.

[38]

Bao L, Zhang ZQ, Le QC, Zhang S, Cui JZ. Corrosion behavior and mechanism of Mg-Y-Zn-Zr alloys with various Y/Zn mole ratios. J. Alloy. Compd., 2017, 712: 15.

[39]

D. Kwon, H.V. Pham, P. Song, and S. Moon, Corrosion behavior of the AZ31 Mg alloy in neutral aqueous solutions containing various anions, Metals, 13(2023), No. 5, art. No. 962.

[40]

Oliveira LAD, Silva RMPD, Rodas ACD, Souto RM, Antunes RA. Surface chemistry, film morphology, local electrochemical behavior and cytotoxic response of anodized AZ31B magnesium alloy. J. Mater. Res. Technol., 2020, 9(6): 14754.

[41]

Laschuk NO, Easton EB, Zenkina OV. Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC Adv., 2021, 11(45): 27925.

[42]

Uppal G, Thakur A, Chauhan A, Bala S. Magnesium based implants for functional bone tissue regeneration-A review. J. Magnes. Alloys, 2022, 10(2): 356.

[43]

Cao FY, Shi ZM, Hofstetter J. et al.. Corrosion of ultra-high-purity Mg in 3.5% NaCl solution saturated with Mg(OH)2. Corros. Sci., 2013, 75: 78.

[44]

Abidin NIZ, Atrens AD, Martin D, Atrens A. Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in hank’ s solution at 37°C. Corros. Sci., 2011, 53(11): 3542.

[45]

Xin YC, Liu CL, Zhang XM, Tang GY, Tian XB, Chu PK. Corrosion behavior of biomedical AZ91 magnesium alloy in simulated body fluids. J. Mater. Res., 2007, 22(7): 2004.

[46]

A. Fijolek, J. Lelito, H. Krawiec, J. Ryba, and Ł. Rogal, Corrosion resistance of Mg72Zn24Ca4 and Zn87Mg9Ca4 alloys for application in medicine, Materials, 13(2020), No. 16, art. No. 3515.

[47]

M.J. Liang, C. Wu, Y. Ma, et al., Influences of aggressive ions in human plasma on the corrosion behavior of AZ80 magnesium alloy, Mater. Sci. Eng. C, 119(2021), art. No. 111521.

[48]

Xin YC, Huo KF, Hu T, Tang GY, Chu PK. Corrosion products on biomedical magnesium alloy soaked in simulated body fluids. J. Mater. Res., 2009, 24(8): 2711.

[49]

Witecka A, Bogucka A, Yamamoto A. et al.. In vitro degradation of ZM21 magnesium alloy in simulated body fluids. Mater. Sci. Eng. C, 2016, 65: 59.

[50]

Chen B, Yin KY, Lu TF. et al.. AZ91 magnesium alloy/porous hydroxyapatite composite for potential application in bone repair. J. Mater. Sci. Technol., 2016, 32(9): 858.

[51]

J.X. Zhang, X. Ding, R.R. Chen, and J.S. Zhang, Corrosion behaviors of hot-extruded Mg96Y2Zn2 alloy in transverse and longitudinal directions: Guidance for parameters selection, J. Alloy. Compd., 923(2022), art. No. 166405.

[52]

Xu DK, Liu L, Xu YB, Han EH. The fatigue behavior of I-phase containing as-cast Mg-Zn-Y-Zr alloy. Acta Mater., 2008, 56(5): 985.

[53]

Song YW, Shan DY, Chen RS, Han EH. Effect of second phases on the corrosion behaviour of wrought Mg-Zn-Y-Zr alloy. Corros. Sci., 2010, 52(5): 1830.

[54]

Xu DK, Tang WN, Liu L, Xu YB, Han EH. Effect of W-phase on the mechanical properties of as-cast Mg-Zn-Y-Zr alloys. J. Alloy. Compd., 2008, 461(1–2): 248.

[55]

Wang WH, Wu HL, Zan R. et al.. Microstructure controls the corrosion behavior of a lean biodegradable Mg-2Zn alloy. Acta Biomater., 2020, 107: 349.

[56]

Gai XX, Liu CH, Wang GW. et al.. A novel method for evaluating the dynamic biocompatibility of degradable biomaterials based on real-time cell analysis. Regen. Biomater., 2020, 7(3): 321.

[57]

Zhao ZY, Li G, Ruan HT. et al.. Capturing magnesium ions via microfluidic hydrogel microspheres for promoting cancel-lous bone regeneration. ACS Nano, 2021, 15(8): 13041.

[58]

Li P, Schille C, Schweizer E. et al.. Selection of extraction medium influences cytotoxicity of zinc and its alloys. Acta Biomater., 2019, 98: 235.

[59]

International Organization for Standardization, ISO10993-12Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity, 2009GenevaInternational Organization for Standardization

[60]

Kang YY, Du BN, Li YM. et al.. Optimizing mechanical property and cytocompatibility of the biodegradable Mg-Zn-Y-Nd alloy by hot extrusion and heat treatment. J. Mater. Sci. Technol., 2019, 35(1): 6.

[61]

Johnson I, Perchy D, Liu HN. In vitro evaluation of the surface effects on magnesium-yttrium alloy degradation and mesenchymal stem cell adhesion. J. Biomed. Mater. Res. Part A, 2012, 100A(2): 477.

[62]

Yasuura S, Ueno T, Watanabe S, Hirose M, Namihisa T. Immunocytochemical localization of myosin in normal and phalloidin-treated rat hepatocytes. Gastroenterology, 1989, 97(4): 982.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/