Liquid metal composites: Recent advances and applications

Chunghyeon Choi , Liyang Liu , Byungil Hwang

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (5) : 1008 -1024.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (5) : 1008 -1024. DOI: 10.1007/s12613-025-3090-1
Review

Liquid metal composites: Recent advances and applications

Author information +
History +
PDF

Abstract

Liquid metals (LMs), because of their ability to remain in a liquid state at room temperature, render them highly versatile for applications in electronics, energy storage, medicine, and robotics. Among various LMs, Ga-based LMs exhibit minimal cytotoxicity, low viscosity, high thermal and electrical conductivities, and excellent wettability. Therefore, Ga-based LM composites (LMCs) have emerged as a recent research focus. Recent advancements have focused on novel fabrication techniques and applications spanning energy storage, flexible electronics, and biomedical devices. Particularly noteworthy are the developments in wearable sensors and electronic skins, which hold promise for healthcare monitoring and human–machine interfaces. Despite their potential, challenges, such as oxidative susceptibility and biocompatibility, remain. Creating bio-based LMC materials is a promising approach to address these issues while exploring new avenues to optimize LMC performance and broaden its application domains. This review provides a concise overview of the recent trends in LMC research, highlights their transformative impacts, and outlines key directions for future investigation and development.

Keywords

composites / liquid metal / polymer / applications / alloys / Engineering / Materials Engineering / Chemical Sciences / Physical Chemistry (incl. Structural)

Cite this article

Download citation ▾
Chunghyeon Choi, Liyang Liu, Byungil Hwang. Liquid metal composites: Recent advances and applications. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(5): 1008-1024 DOI:10.1007/s12613-025-3090-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R.W. Style, R. Tutika, J.Y. Kim, and M.D. Bartlett, Solid–liquid composites for soft multifunctional materials, Adv. Funct. Mater., 31(2021), No. 1, art. No. 2005804.

[2]

H. Li, R. Qiao, T.P. Davis, and S.Y. Tang, Biomedical applications of liquid metal nanoparticles: A critical review, Biosensors, 10(2020), No. 12, art. No. 196.

[3]

NicholasMG, OldCF. Liquid metal embrittlement. J. Mater. Sci., 1979, 1411.

[4]

Q. Wang, Y. Yu, and J. Liu, Preparations, characteristics and applications of the functional liquid metal materials, Adv. Eng. Mater., 20(2018), No. 5, art. No. 1700781.

[5]

K.N. Paracha, A.D. Butt, A.S. Alghamdi, S.A. Babale, and P.J. Soh, Liquid metal antennas: Materials, fabrication and applications, Sensors, 20(2019), No. 1, art. No. 177.

[6]

HwangB, HanY, MatteiniP. Bending fatigue behavior of Ag nanowire/Cu thin-film hybrid interconnects for wearable electronics. Facta Univ. Ser. Mech. Eng., 2022, 203553

[7]

H. Kim, G. Kim, J.H. Kang, M.J. Oh, N. Qaiser, and B. Hwang, Intrinsically conductive and highly stretchable liquid metal/carbon nanotube/elastomer composites for strain sensing and electromagnetic wave absorption, Adv. Compos. Hybrid Mater., 8(2025), art. No. 14.

[8]

K.B. Ozutemiz, J. Wissman, O.B. Ozdoganlar, and C. Majidi, EGaIn–metal interfacing for liquid metal circuitry and microelectronics integration, Adv. Mater. Interfaces, 5(2018), No. 10, art. No. 1701596.

[9]

HayesGJ, SoJH, QusbaA, DickeyMD, LazziG. Flexible liquid metal alloy (EGaIn) microstrip patch antenna. IEEE Trans. Anntenas. Propag., 2012, 6052151.

[10]

M.D. Dickey, Stretchable and soft electronics using liquid metals, Adv. Mater., 29(2017), No. 27, art. No. 1606425.

[11]

BattezzatiL, GreerAL. The viscosity of liquid metals and alloys. Acta Metall., 1989, 3771791.

[12]

GiordanengoB, BenazziN, VinckelJ, GasserJG, RoubiL. Thermal conductivity of liquid metals and metallic alloys. J. Non Cryst. Solids, 1999, 250: 377.

[13]

G.Y. Bo, L. Ren, X. Xu, Y. Du, and S.X. Dou, Recent progress on liquid metals and their applications, Adv. Phys. X, 3(2018), No. 1, art. No. 1446359.

[14]

NaidichJ VCadenheadDA, DanielliJF. The wettability of solids by liquid metals. Progress in Surface and Membrane Science, 1981New YorkAcademic Press353Vol. 14

[15]

KimJH, KimS, SoJH, KimK, KooHJ. Cytotoxicity of gallium–indium liquid metal in an aqueous environment. ACS Appl. Mater. Interfaces, 2018, 102017448.

[16]

R. Tutika, S.H. Zhou, R.E. Napolitano, and M.D. Bartlett, Mechanical and functional tradeoffs in multiphase liquid metal, solid particle soft composites, Adv. Funct. Mater., 28(2018), No. 45, art. No. 1804336.

[17]

M.J. Ford, D.K. Patel, C. Pan, S. Bergbreiter, and C. Majidi, Controlled assembly of liquid metal inclusions as a general approach for multifunctional composites, Adv Mater, 32(2020), No. 46, art. No. 2002929.

[18]

HaH, QaiserN, YunTG, CheongJY, LimS, HwangB. Sensing mechanism and application of mechanical strain sensor: A mini-review. Facta Univ. Ser. Mech. Eng., 2023, 214751

[19]

N. Kazem, T. Hellebrekers, and C. Majidi, Soft multifunctional composites and emulsions with liquid metals, Adv. Mater., 29(2017), No. 27, art. No. 1605985.

[20]

KimH, QaiserN, HwangB. Electro-mechanical response of stretchable PDMS composites with a hybrid filler system. Facta Univ. Ser. Mech. Eng., 2023, 211051

[21]

C. Chiew and M.H. Malakooti, A double inclusion model for liquid metal polymer composites, Compos. Sci. Technol., 208(2021), art. No. 108752.

[22]

BartlettMD, KazemN, Powell-PalmMJ, et al. . High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc. Natl. Acad. Sci. U.S.A., 2017, 11492143.

[23]

DianiJ, FayolleB, GilorminiP. A review on the Mullins effect. Eur. Polym. J., 2009, 453601.

[24]

X.L. Wang, W.H. Yao, R. Guo, et al., Soft and moldable Mg-doped liquid metal for conformable skin tumor photothermal therapy, Adv. Healthcare Mater., 7(2018), No. 14, art. No. 1800318.

[25]

R. Tutika, A.B.M.T. Haque, and M.D. Bartlett, Self-healing liquid metal composite for reconfigurable and recyclable soft electronics, Commun. Mater., 2(2021), art. No. 64.

[26]

LiY, CuiYG, ZhangMJ, et al. . Ultrasensitive pressure sensor sponge using liquid metal modulated nitrogen-doped graphene nanosheets. Nano Lett., 2022, 2272817.

[27]

J.Y. Yang, K.Y. Kwon, S. Kanetkar, et al., Skin-inspired capacitive stress sensor with large dynamic range via bilayer liquid metal elastomers, Adv. Mater. Technol., 7(2022), No. 5, art. No. 2101074.

[28]

T.A. Pozarycki, D. Hwang, E.J. Barron III, B.T. Wilcox, R. Tutika, and M.D. Bartlett, Tough bonding of liquid metal-elastomer composites for multifunctional adhesives, Small, 18(2022), No. 41, art. No. 2203700.

[29]

DingL, HangC, YangSJ, et al. . In situ deposition of skin-adhesive liquid metal particles with robust wear resistance for epidermal electronics. Nano Lett., 2022, 22114482.

[30]

R. Tutika, S. Kmiec, A.B.M.T. Haque, S.W. Martin, and M.D. Bartlett, Liquid metal-elastomer soft composites with independently controllable and highly tunable droplet size and volume loading, ACS Appl. Mater. Interfaces, 11(2019), No. 19, art. No. 17873.

[31]

ZadanM, MalakootiMH, MajidiC. Soft and stretchable thermoelectric generators enabled by liquid metal elastomer composites. ACS Appl. Mater. Interfaces, 2020, 121517921.

[32]

HaH, MüllerS, BaumannRP, HwangB. Peakforce quantitative nanomechanical mapping for surface energy characterization on the nanoscale: A mini-review. Facta Univ. Ser. Mech. Eng., 2024, 221001

[33]

AmoabengD, VelankarSS. A review of conductive polymer composites filled with low melting point metal alloys. Polym. Eng. Sci., 2018, 5861010.

[34]

ZhuS, SoJH, MaysR, et al. . Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv. Funct. Mater., 2013, 23182308.

[35]

DelannayF, FroyenL, DeruyttereA. The wetting of solids by molten metals and its relation to the preparation of metal-matrix composites composites. J. Mater. Sci., 1987, 2211.

[36]

KaczmarJ, PietrzakK, WłosińskiW. The production and application of metal matrix composite materials. J. Mater. Process. Technol., 2000, 1061–358.

[37]

GuymonGG, MalakootiMH. Multifunctional liquid metal polymer composites. J. Polym. Sci., 2022, 6081300.

[38]

AmbuloCP, FordMJ, SearlesK, MajidiC, WareTH. 4D-printable liquid metal–liquid crystal elastomer composites. ACS Appl Mater Interfaces, 2021, 131112805.

[39]

A.B.M.T. Haque, R. Tutika, R.L. Byrum, and M.D. Bartlett, Programmable liquid metal microstructures for multifunctional soft thermal composites, Adv. Funct. Mater., 30(2020), No. 25, art. No. 2000832.

[40]

M.G. Saborio, S.X. Cai, J.B. Tang, et al., Liquid metal droplet and graphene co-fillers for electrically conductive flexible composites, Small, 16(2020), No. 12, art. No. 1903753.

[41]

QianX, ZhouJW, ChenG. Phonon-engineered extreme thermal conductivity materials. Nat. Mater., 2021, 2091188.

[42]

H.A. Eivari, Z. Sohbatzadeh, P. Mele, and M.H.N. Assadi, Low thermal conductivity: Fundamentals and theoretical aspects in thermoelectric applications, Mater. Today Energy, 21(2021), art. No. 100744.

[43]

OnyiboEC, AsmaelM. State-of-the-art review of spring-back behavior of polymers. Spectr. Mech. Eng. Oper. Res., 2024, 11272.

[44]

ZengW, TaoXM, LinSP, et al. . Defect-engineered reduced graphene oxide sheets with high electric conductivity and controlled thermal conductivity for soft and flexible wearable thermoelectric generators. Nano Energy, 2018, 54: 163.

[45]

JonsonM, MahanGD. Mott’s formula for the thermopower and the Wiedemann-Franz law. Phys. Rev. B, 1980, 21104223.

[46]

TanLM, ZhangJB, ShenJ. Liquid metal/metal porous skeleton with high thermal conductivity and stable thermal reliability. J. Mater. Sci., 2023, 584717829.

[47]

KimS, ParkJ, PiYH, et al. . Facile low-oxidation emulsification of liquid metal using polyvinylpyrrolidone for highly viscoelastic heat conductive pastes. ACS Appl. Eng. Mater., 2024, 2112705.

[48]

WangSL, ChesterSA. Modeling thermal recovery of the Mullins effect. Mech. Mater., 2018, 126: 88.

[49]

TangSY, QiaoRR. Liquid metal particles and polymers: A soft–soft system with exciting properties. Acc. Mater. Res., 2021, 210966.

[50]

P.S. Banerjee, D.K. Rana, and S.S. Banerjee, Influence of microstructural alterations of liquid metal and its interfacial interactions with rubber on multifunctional properties of soft composite materials, Adv. Colloid Interface Sci., 308(2022), art. No. 102752.

[51]

T.S. Munonde and P.N. Nomngongo, Nanocomposites for electrochemical sensors and their applications on the detection of trace metals in environmental water samples, Sensors, 21(2021), No. 1, art. No. 131.

[52]

ZaiedI, FitouriH, ChineZ, RebeyA, El JaniB. Atmospheric-pressure metal–organic vapor-phase epitaxy of GaAsBi alloys on high-index GaAs substrates. J. Phys. Chem. Solids, 2014, 752244.

[53]

ChenHG, GuoZC, WangHS, HuangWY, PanF, WangZQ. A liquid metal interlayer for boosted charge transfer and dendrite-free deposition toward high-performance Zn anodes. Energy Storage Mater., 2023, 54: 563.

[54]

LiuY, ZhangW, WangH. Synthesis and application of core-shell liquid metal particles: A perspective of surface engineering. Mater. Horiz., 2021, 8156.

[55]

Z. Li, Y.M. Guo, Y.F. Zong, et al., Ga based particles, alloys and composites: Fabrication and applications, Nanomaterials, 11(2021), No. 9, art. No. 2246.

[56]

ChiewC, MorrisMJ, MalakootiMH. Functional liquid metal nanoparticles: Synthesis and applications. Mater. Adv., 2021, 2247799.

[57]

DaenekeT, KhoshmaneshK, MahmoodN, et al. . Liquid metals: Fundamentals and applications in chemistry. Chem. Soc. Rev., 2018, 47114073.

[58]

ChoiC, QaiserN, HwangB. Mechanically pressed polymer-matrix composites with 3D structured filler networks for electromagnetic interference shielding application. Facta Univ. Ser. Mech. Eng., 2024, 224601

[59]

ChenS, WangHZ, ZhaoRQ, RaoW, LiuJ. Liquid metal composites. Matter, 2020, 261446.

[60]

ReganMJ, TostmannH, PershanPS, et al. . X-ray study of the oxidation of liquid-gallium surfaces. Phys. Rev. B, 1997, 551610786.

[61]

DownsAJChemistry of Aluminium, Gallium, Indium and Thallium, 1993New YorkSpringer Dordrecht.

[62]

DickeyMD. Emerging applications of liquid metals featuring surface oxides. ACS Appl. Mater. Interfaces, 2014, 62118369.

[63]

L. Mou, J. Qi, L.X. Tang, et al., Highly stretchable and biocompatible liquid metal-elastomer conductors for self-healing electronics, Small, 16(2020), No. 51, art. No. 2005336.

[64]

M.A. Rahim, F. Centurion, J.L. Han, et al., Polyphenol-induced adhesive liquid metal inks for substrate-independent direct pen writing, Adv. Funct. Mater., 31(2021), No. 10, art. No. 2007336.

[65]

H. Wang, W.K. Xing, S. Chen, C.Y. Song, M.D. Dickey, and T. Deng, Liquid metal composites with enhanced thermal conductivity and stability using molecular thermal linker, Adv. Mater., 33(2021), No. 43, art. No. 2103104.

[66]

H. Wang, Y. Yao, Z. He, et al., A highly stretchable liquid metal polymer as reversible transitional insulator and conductor, Adv Mater, 31(2019), No. 23, art. No. 1901337.

[67]

B. Chen, Y. Cao, Q. Li, et al., Liquid metal-tailored gluten network for protein-based e-skin, Nat. Commun., 13(2022), No. 1, art. No. 1206.

[68]

W. Babatain, M.S. Kim, and M.M. Hussain, From droplets to devices: Recent advances in liquid metal droplet enabled electronics, Adv. Funct. Mater., 34(2024), No. 31, art. No. 2308116.

[69]

Y.F. Wang, M. Mayyas, J. Yang, et al., Self-deposition of 2D molybdenum sulfides on liquid metals, Adv. Funct. Mater., 31(2021), No. 3, art. No. 2005866.

[70]

Y.L. Lin, J. Genzer, and M.D. Dickey, Attributes, fabrication, and applications of gallium-based liquid metal particles, Adv. Sci., 7(2020), No. 12, art. No. 2000192.

[71]

B. Zhao, Y.Q. Du, H.L. Lv, et al., Liquid-metal-assisted programmed galvanic engineering of core-shell nanohybrids for microwave absorption, Adv. Funct. Mater., 33(2023), No. 34, art. No. 2302172.

[72]

R.M. Zheng, Z.F. Peng, Y. Fu, et al., A novel conductive core-shell particle based on liquid metal for fabricating realtime self-repairing flexible circuits, Adv. Funct. Mater., 30(2020), No. 15, art. No. 1910524.

[73]

WangY, GaoYN, YueTN, ChenXD, CheRC, WangM. Liquid metal coated copper micro-particles to construct core-shell structure and multiple heterojunctions for high-efficiency microwave absorption. J. Colloid Interface Sci., 2022, 607: 210.

[74]

MaJ, LinY, KimYW, et al. . Liquid metal nanoparticles as initiators for radical polymerization of vinyl monomers. ACS Macro Lett., 2019, 8111522.

[75]

BoleyJW, WhiteEL, KramerRK. Mechanically sintered gallium–indium nanoparticles. Adv Mater, 2015, 27142355.

[76]

A. Hajalilou, A.F. Silva, P.A. Lopes, E. Parvini, C. Majidi, and M. Tavakoli, Biphasic liquid metal composites for sinter-free printed stretchable electronics, Adv. Mater. Interfaces, 9(2022), No. 5, art. No. 2101913.

[77]

X.T. Xue, D.G. Zhang, Y.L. Wu, et al., Segregated and non-settling liquid metal elastomer via jamming of elastomeric particles, Adv. Funct. Mater., 33(2023), No. 6, art. No. 2210553.

[78]

ZhangMK, YaoSY, RaoW, LiuJ. Transformable soft liquid metal micro/nanomaterials. Mater. Sci. Eng. R, 2019, 138: 1.

[79]

LiuS, YuenMC, WhiteEL, et al. . Laser sintering of liquid metal nanoparticles for scalable manufacturing of soft and flexible electronics. ACS Appl. Mater. Interfaces, 2018, 103328232.

[80]

N. Kazem, M.D. Bartlett, and C. Majidi, Extreme toughening of soft materials with liquid metal, Adv. Mater., 30(2018), No. 22, art. No. 1706594.

[81]

WuP, FuJ, XuY, HeY. Liquid metal microgels for three-dimensional printing of smart electronic clothes. ACS Appl Mater Interfaces, 2022, 141113458.

[82]

W. Kong, Z. Wang, M. Wang, et al., Oxide-mediated formation of chemically stable tungsten–liquid metal mixtures for enhanced thermal interfaces, Adv. Mater., 31(2019), No. 44, art. No. 1904309.

[83]

HeXK, WuJP, XuanSH, SunSS, GongXL. Stretchable and recyclable liquid metal droplets embedded elastomer composite with high mechanically sensitive conductivity. ACS Appl. Mater. Interfaces, 2022, 1479597.

[84]

H. Zou, Y. Zhang, L. Guo, et al., Quantifying the triboelectric series, Nat. Commun., 10(2019), No. 1, art. No. 1427.

[85]

ZhouLL, LiuD, WangJ, WangZL. Triboelectric nanogenerators: Fundamental physics and potential applications. Friction, 2020, 83481.

[86]

X. Pu, C. Zhang, and Z.L. Wang, Triboelectric nanogenerators as wearable power sources and self-powered sensors, Natl. Sci. Rev., 10(2022), No. 1, art. No. nwac170.

[87]

B. Nowacki, K. Mistewicz, S. Hajra, and H.J. Kim, 3D printed triboelectric nanogenerator for underwater ultrasonic sensing, Ultrasonics, 133(2023), art. No. 107045.

[88]

Z.T. Wei, J.L. Wang, Y.H. Liu, et al., Sustainable triboelectric materials for smart active sensing systems, Adv. Funct. Mater., 32(2022), No. 52, art. No. 2208277.

[89]

Y.J. Yang, J. Han, J.R. Huang, et al., Stretchable energy-harvesting tactile interactive interface with liquid-metal-nanoparticle-based electrodes, Adv. Funct. Mater., 30(2020), No. 29, art. No. 1909652.

RIGHTS & PERMISSIONS

The Author(s)

AI Summary AI Mindmap
PDF

207

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/