Influence of unloading orifice size on the production of microsized ore particles by gas rapid unloading

Genghao Zhang , Deyang Zhao , Yi Chang , Yongbo Fan , Renshu Yang , Shihai Li

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (10) : 2366 -2375.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (10) : 2366 -2375. DOI: 10.1007/s12613-024-3085-3
Research Article
research-article

Influence of unloading orifice size on the production of microsized ore particles by gas rapid unloading

Author information +
History +
PDF

Abstract

Gas rapid unloading (GRU) is an innovative technology for ore comminution. Increasing the production of fine powder in each ore grinding cycle is vital for scaling up the GRU method to industrial applications. This study utilizes laboratory experiments to demonstrate that moderately reducing the orifice size significantly enhances pulverization and increases fine particle yield. Numerical simulations suggest that smaller orifices improve pulverization by increasing jet speed, reducing pressure drop, and creating a larger pressure difference inside and outside the unloading orifice. The orifice size should be optimized based on feed size to ensure efficient ore discharge. Reducing the unloading orifice size improves GRU grinding efficiency and energy use, offering guidance for the design of ore discharge ports in future industrial-scale equipment.

Keywords

iron ore pulverization / high-pressure gas / rapid unloading / orifice size / high-pressure gas jets

Cite this article

Download citation ▾
Genghao Zhang, Deyang Zhao, Yi Chang, Yongbo Fan, Renshu Yang, Shihai Li. Influence of unloading orifice size on the production of microsized ore particles by gas rapid unloading. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(10): 2366-2375 DOI:10.1007/s12613-024-3085-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sauer PC, Seuring S. Sustainable supply chain management for minerals. J. Cleaner Prod., 2017, 151: 235.

[2]

Ali SH, Giurco D, Arndt N. et al.. Mineral supply for sustainable development requires resource governance. Nature, 2017, 543(7645): 367.

[3]

Fuerstenau MC, Han KNPrinciples of Mineral Processing, 2003EnglewoodSociety for Mining, Metalluryy, and Exploration

[4]

Duroudier JPSize Reduction of Divided Solids, 2016AmsterdamElsevier

[5]

United Nations Framework Convention on Climate Change, The Paris Agreement, PhoenixDesignAid, Denmark [2018-11-25]. https://unfccc.int/documents/184656

[6]

Liu YK, Wang YM, Chen QS. Using cemented paste backfill to tackle the phosphogypsum stockpile in China: A down-to-earth technology with new vitalities in pollutant retention and CO2 abatement. Int. J. Miner. Metall. Mater., 2024, 31(7): 1480.

[7]

T. Ou, J. Liu, W. Chen, Z.P. Ma, and Y.W. Xiong, A novel IoT sensor and evolution model for grinding mill liner wear monitoring, Miner. Eng., 217(2024), art. No. 108959.

[8]

Y.W. Liu, G.W. Yan, R. Li, S.Y. Xiao, M.F. Ren, and L. Cheng, Multi- source unsupervised domain adaptive mill load forecasting method based on deep learning and fusion features, Miner. Eng., 209(2024), art. No. 108650.

[9]

N. Matsanga, W. Nheta, and N. Chimwani, A review of the grinding media in ball mills for mineral processing, Minerals, 13(2023), No. 11, art. No. 1373.

[10]

Valero A, Valero A. Exergy of comminution and the thanatia earth’s model. Energy, 2012, 44(1): 1085.

[11]

Jeswiet J, Szekeres A. Energy consumption in mining comminution. Procedia CIRP, 2016, 48: 140.

[12]

Fuerstenau DW, Abouzeid AZM. The energy efficiency of ball milling in comminution. Int. J. Miner. Process., 2002, 67(1–4): 161.

[13]

Numbi BP, Zhang J, Xia X. Optimal energy management for a jaw crushing process in deep mines. Eergyy, 2014, 68: 337

[14]

Johansson M, Bengtsson M, Evertsson M, Hulthén E. A fundamental model of an industrial-scale jaw crusher. Miner. Eng., 2017, 105: 69.

[15]

A. Bahrami, M. Abdollahi, M. Mirmohammadi, F. Kazemi, A. Danesh, and M. Shokrzadeh, A process mineralogy approach to study the efficiency of milling of molybdenite circuit processing, Sci. Rep., 10(2020), No. 1, art. No. 21211.

[16]

Duroudier JP. Ball and rod mills. Size Reduction of Divided Solids, 2016AmsterdamElsevier73. Vol. 3

[17]

A.S. Yamashita, A. Thivierge, and T.A.M. Euzébio, A review of modeling and control strategies for cone crushers in the mineral processing and quarrying industries, Miner. Eng., 170(2021), art. No. 107036.

[18]

P.W. Cleary and R.D. Morrison, Geometric analysis of cone crusher liner shape: Geometric measures, methods for their calculation and linkage to crusher behaviour, Miner. Eng., 160(2021), art. No. 106701.

[19]

Gao P, Zhou WT, Han YX, Li YJ, Ren WL. Enhancing the capacity of large-scale ball mill through process and equipment optimization: An industrial test verification. Adv. Powder Technol., 2020, 31(5): 2079.

[20]

M. Laurence, M. Rujeko, K. Tatenda, and C. Kudzanayi, Ball mill energy efficiency optimization techniques: A review, i-Manag. J. Mech. Eng., 13(2023), No. 4, art. No. 41.

[21]

L.X. Li, B. Wei, Q. Zhang, et al., Evaluating the performance of an industrial-scale high pressure grinding rolls (HPGR)-tower mill comminution circuit, Miner. Eng., 191(2023), art. No. 107973.

[22]

C.W. Zhang, Y.D. Zou, D.Z. Gou, A.B. Yu, and R.Y. Yang, Experimental and numerical investigation of particle size and particle strength reduction in high pressure grinding rolls, Powder Technol., 410(2022), art. No. 117892.

[23]

Cooper C, Wang P, Zhang JJ. et al.. Convolutional neural network-based tool condition monitoring in vertical milling operations using acoustic signals. Procedia Manaf., 2020, 49: 105

[24]

Jayasundara CT, Yang RY, Yu AB. Effect of the size of media on grinding performance in stirred mills. Miner. Eng., 2012, 33: 66.

[25]

Taylor L, Skuse D, Blackburn S, Greenwood R. Stirred media mills in the mining industry: Material grindability, energy-size relationships, and operating conditions. Powder Technol., 2020, 369: 1.

[26]

M. Can and O. Altun, Performance comparison of the vertical and horizontal oriented stirred mill: Pilot scale IsaMill vs. full-scale HIGMill, Minerals, 13(2023), No. 3, art. No. 315.

[27]

K.R. Rajaonarivony, C. Mayer-Laigle, B. Piriou, and X. Rouau, Comparative comminution efficiencies of rotary, stirred and vibrating ball-mills for the production of ultrafine biomass powders, Energy, 227(2021), art. No. 120508.

[28]

Huang W, Chen YM. The application of high voltage pulses in the mineral processing industry - A review. Powder Technol., 2021, 393: 116.

[29]

Andres U, Bialecki R. Liberation of mineral constituents by high-voltage pulses. Powder Technol., 1986, 48(3): 269.

[30]

Gao P, Qin YH, Han YX, Li YJ, Liu SY. Strengthening leaching effect of Carlin-type gold via high-voltage pulsed discharge pretreatment. Int. J. Miner. Metall. Mater., 2021, 28(6): 965.

[31]

Z.L. Ge, H.W. Zhang, Z. Zhou, et al., Experimental study on the characteristics and mechanism of high-pressure water jet fracturing in high-temperature hard rocks, Energy, 270(2023), art. No. 126848.

[32]

Natarajan Y, Murugesan PK, Mohan M, Liyakath Ali Khan SA. Abrasive water jet machining process: A state of art of review. J. Manaf. Process., 2020, 49: 271.

[33]

Swart AJ, Mendonidis P. Evaluating the effect of radio-frequency pre-treatment on granite rock samples for comminution purposes. Int. J. Miner. Process., 2013, 120: 1.

[34]

Buttress AJ, Rodriguez JM, Ure A, Ferrari RS, Dodds C, Kingman SW. Production of high purity silica by microfluidic-inclusion fracture using microwave pre-treatment. Miner. Eng., 2019, 131: 407.

[35]

Fan YB, Duan WJ, Li SH, Qiao JY. Experiment on micron-sized particle production of iron ore by rapid unloading of liquid CO2. Powder Technol., 2018, 327: 449.

[36]

Fan YB, Qiao JY, Li SH, Feng C. Micron-sized silicon carbide particle production via rapid unloading of high-pressure liquid CO2. J. Aast. Ceram. Soc., 2019, 55(2): 595.

[37]

M. Hesse, P. Asetre, R. Anderson, et al., Experimental demonstration of comminution with transcritical carbon dioxide cycles, Powder Technol., 407(2022), art. No. 117615.

[38]

Y.B. Fan, C. Feng, S.H. Li, et al., Production of micron-sized particles of bauxite by circulating pulverization experiment, Adv. Mater. Sci. Eng., 2022(2022), No. 1, art. No. 6889003.

[39]

Schönert K. Breakage of spheres and circular discs. Powder Technol., 2004, 143–144: 2.

[40]

Yin Q, Wen F, Tao ZG. et al.. Effects of aggregate size distribution and carbon nanotubes on the mechanical properties of cemented gangue backfill samples under true triaxial compression. Int. J. Miner. Metall. Mater., 2025, 32(2): 311.

[41]

G.H. Zhang, Y.B. Fan, R.S. Yang, and S.H. Li, Influence of ore size on the production of micro-sized ore particles by high-pressure gas rapid unloading, Powder Technol., 427(2023), art. No. 118716.

[42]

Vesilind PA. The Rosin-Rammler particle size distribution. Resour. Recovery Conserv., 1980, 5(3): 275.

[43]

Kumar R, Gopireddy SR, Jana AK, Patel CM. Study of the discharge behavior of Rosin-Rammler particle-size distributions from hopper by discrete element method: A systematic analysis of mass flow rate, segregation and velocity profiles. Powder Technol., 2020, 360: 818.

[44]

Cheng HY, Wu SC, Zhang XQ, Wu AX. Effect of particle gradation characteristics on yield stress of cemented paste backfill. Int. J. Miner. Metall. Mater., 2020, 27(1): 10.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/