Thermodynamic and mechanical properties of Co–Fe–Ni–Zn–P multicomponent metallic nanoglasses: Some insight into the entropy-stabilized glass–glass interfaces

Tian Li , Nana Li , Rongxue Luo , Guangping Zheng

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (8) : 1965 -1977.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (8) : 1965 -1977. DOI: 10.1007/s12613-024-3079-1
Research Article
research-article

Thermodynamic and mechanical properties of Co–Fe–Ni–Zn–P multicomponent metallic nanoglasses: Some insight into the entropy-stabilized glass–glass interfaces

Author information +
History +
PDF

Abstract

Although the existence of glass–glass interfaces (GGIs) enables improved ductility of metallic nanoglasses (NGs), the excess free volumes at GGIs would cause the NGs to have a much-reduced mechanical strength. Herein, entropy-stabilized GGIs have been investigated in Co–Fe–Ni–Zn–P NGs, which have a large entropy of mixing (1.32R, where R is the gas constant) and could be in a new glass phase, different from that of glassy grain interiors. Through quantitatively determining the activation energy of glass transition separately for the GGIs and glassy grain interiors, the excess free volumes at GGIs are found to be reduced in comparison with those in the glassy grain interiors. The thermodynamically stable GGIs could be associated with increasing entropy of mixing in the GGI regions, which stabilizes the atomic structures of GGIs and enhances the glass forming ability of Co–Fe–Ni–Zn–P NGs. The influences of entropy-stabilized GGIs on the mechanical properties of Co–Fe–Ni–Zn–P NGs are further investigated by nanoindentation and creep tests under tensile deformation, demonstrating that there are notable enhancements in the ductility and mechanical strength for Co–Fe–Ni–Zn–P NGs. This work contributes to an in-depth understanding on the GGI phase in NGs and offers an alternative method for strengthening NGs through GGI engineering.

Keywords

glass–glass interfaces / metallic nanoglasses / high-entropy effects / mechanical properties / thermodynamic properties

Cite this article

Download citation ▾
Tian Li, Nana Li, Rongxue Luo, Guangping Zheng. Thermodynamic and mechanical properties of Co–Fe–Ni–Zn–P multicomponent metallic nanoglasses: Some insight into the entropy-stabilized glass–glass interfaces. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(8): 1965-1977 DOI:10.1007/s12613-024-3079-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AshbyMF, GreerAL. Metallic glasses as structural materials. Scripta. Mater., 2006, 543321

[2]

MiroshnichenkoLS, SalliIV. Structure of cast iron haniened in liquid state. Lnduslr. Lab., 1959, 251463

[3]

KlementW, WillensRH, DuwezP. Non-crystalline structure in solidified gold–silicon alloys. Nature, 1960, 187869

[4]

J.H. Yao, J.Q. Wang, and Y. Li, Ductile Fe–Nb–B bulk metallic glass with ultrahigh strength, Appl. Phys. Lett., 92(2008), No. 25, art. No. 251906.

[5]

XuJ, RamamurtyU, MaE. The fracture toughness of bulk metallic glasses. JOM, 2010, 62410

[6]

JingJ, KrämerA, BirringerR, GleiterH, GonserU. Modified atomic structure in a Pd–Fe–Si nanoglass A Mössbauer study. J. Non Cryst. Solids, 1989, 1132–3167

[7]

GleiterH. Nanoglasses: A new kind of noncrystalline materials. Beilstein J. Nanotechnol., 2013, 4517

[8]

GleiterH, SchimmelT, HahnH. Nanostructured solids–From nano-glasses to quantum transistors. Nano Today, 2014, 9117

[9]

GleiterH. Nanoglasses: A new kind of noncrystalline material and the way to an age of new technologies?. Small, 2016, 12162225

[10]

ChenN, LuzginDVL, YaoKF. A new class of noncrystalline materials: Nanogranular metallic glasses. J. Alloy. Compd., 2017, 707371

[11]

Y. Ivanisenko, C. Kübel, S.H. Nandam, et al., Structure and properties of nanoglasses, Adv. Eng. Mater., 20(2018), No. 12, art. No. 1800404.

[12]

WangJQ, ChenN, LiuP, et al.. The ultrastable kinetic behavior of an Au-based nanoglass. Acta Mater., 2014, 7930

[13]

ChenN, WangD, FengT, et al.. A nanoglass alloying immiscible Fe and Cu at the nanoscale. Nanoscale, 2015, 7156607

[14]

MohriM, WangD, IvanisenkoJ, GleiterH, HahnH. Thermal stability of the Ti–Zr–Cu–Pd nano-glassy thin films. J. Alloy. Compd., 2018, 7352197

[15]

N. Chen, D. Wang, P.F. Guan, et al., Direct observation of fast surface dynamics in sub-10-nm nanoglass particles, Appl. Phys. Lett., 114(2019), No. 4, art. No. 043103.

[16]

T. Li, Y. Shen, and G.P. Zheng, Characterization on the glass forming ability of metallic nano-glasses by the dynamic scaling for mechanical loss in supercooled liquid state, Scripta Mater., 203(2021), art. No. 114109.

[17]

FangJX, VainioU, PuffW, et al.. Atomic structure and structural stability of Sc75Fe25 nanoglasses. Nano Lett., 2012, 121458

[18]

S. Lan, C.Y. Guo, W.Z. Zhou, et al., Engineering medium-range order and polyamorphism in a nanostructured amorphous alloy, Commun. Phys., 2(2019), art. No. 117.

[19]

M. Ghafari, S. Kohara, H. Hahn, et al., Structural investigations of interfaces in Fe90Sc10 nanoglasses using high-energy X-ray diffraction, Appl. Phys. Lett., 100(2012), No. 13, art. No. 133111.

[20]

M. Ghafari, X. Mu, J. Bednarcik, W.D. Hutchison, H. Gleiter, and S.J. Campbell, Magnetic properties of iron clusters in Sc75Fe25 nanoglass, J. Magn. Magn. Mater., 494(2020), art. No. 165819.

[21]

BaksiA, NandamSH, WangD, et al.. Ni60Nb40 nanoglass for tunable magnetism and methanol oxidation. ACS Appl. Nano Mater., 2020, 377252

[22]

M. Ghafari, H. Hahn, H. Gleiter, Y. Sakurai, M. Itou, and S. Kamali, Evidence of itinerant magnetism in a metallic nanoglass, Appl. Phys. Lett., 101(2012), No. 24, art. No. 243104.

[23]

A. Stoesser, M. Ghafari, A. Kilmametov, et al., Influence of interface on structure and magnetic properties of Fe50B50 nano-glass, J. Appl. Phys., 116(2014), No. 13, art. No. 134305.

[24]

WangCM, MuXK, ChellaliMR, et al.. Tuning the Curie temperature of Fe90Sc10 nanoglasses by varying the volume fraction and the composition of the interfaces. Scripta Mater., 2019, 159109

[25]

SinghSP, WitteR, ClemensO, et al.. Magnetic Tb75Fe25 nanoglass for cryogenic permanent magnet undulator. ACS Appl. Nano Mater., 2020, 377281

[26]

WangCM, WangD, MuXK, et al.. Surface segregation of primary glassy nanoparticles of Fe90Sc10 nanoglass. Mater. Lett., 2016, 181248

[27]

AdjaoudO, AlbeK. Interfaces and interphases in nanoglasses: Surface segregation effects and their implications on structural properties. Acta Mater., 2016, 113284

[28]

K.F. Zheng and P.S. Branicio, Synthesis of metallic glass nanoparticles by inert gas condensation, Phys. Rev. Mater., 4(2020), No. 7, art. No. 076001.

[29]

FrankeO, LeisenD, GleiterH, HahnH. Thermal and plastic behavior of nanoglasses. J. Mater. Res., 2014, 29101210

[30]

HuQZ, WuJL, ZhangB. Synthesis and nanoindentation behaviors of binary CuTi nanoglass films. Physica B, 2017, 52128

[31]

NandamSH, IvanisenkoY, SchwaigerR, et al.. Cu–Zr nanoglasses: Atomic structure, thermal stability and indentation properties. Acta Mater., 2017, 136181

[32]

C.Y. Guo, Y.N. Fang, F. Chen, and T. Feng, Nanoindentation creep behavior of electrodeposited Ni–P nanoglass films, Intermetallics, 110(2019), art. No. 106480.

[33]

S.P. Singh, M.R. Chellali, L. Velasco, et al., Deformation-induced atomic rearrangements and crystallization in the shear bands of a Tb75Fe25 nanoglass, J. Alloy. Compd., 821(2020), art. No. 153486.

[34]

C.Q. Pei, R. Zhao, Y.N. Fang, et al., The structural and dynamic heterogeneities of Ni–P nanoglass characterized by stress-relaxation, J. Alloy. Compd., 836(2020), art. No. 155506.

[35]

NandamSH, AdjaoudO, SchwaigerR, et al.. Influence of topological structure and chemical segregation on the thermal and mechanical properties of Pd–Si nanoglasses. Acta Mater., 2020, 193252

[36]

NandamSH, SchwaigerR, KoblerA, et al.. Controlling shear band instability by nanoscale heterogeneities in metallic nanoglasses. J. Mater. Res., 2021, 36142903

[37]

SharmaA, NandamSH, HahnH, PrasadKE. On the differences in shear band characteristics between a binary Pd–Si metallic and nanoglass. Scripta Mater., 2021, 19117

[38]

Z.D. Sha, L.C. He, Q.X. Pei, et al., On the Notch sensitivity of CuZr nanoglass, J. Appl. Phys., 115(2014), No. 16, art. No. 163507.

[39]

AverbackRS, HahnH, HöflerHJ, LogasJC. Processing and properties of nanophase amorphous metallic alloys: Ni–Ti. Appl. Phys. Lett., 1990, 57171745

[40]

DanilovD, HahnH, GleiterH, WenzelW. Mechanisms of nanoglass ultrastability. ACS Nano, 2016, 1033241

[41]

AdjaoudO, AlbeK. Microstructure formation of metallic nanoglasses: Insights from molecular dynamics simulations. Acta Mater., 2018, 145322

[42]

T. Li, N.N. Li, B. Kuang, and G.P. Zheng, Molecular dynamics simulation on the mechanical properties of Zr–Cu metallic nanoglasses with heterogeneous chemical compositions, Front. Mater., 11(2024), art. No. 1355522.

[43]

ŚniadeckiZ, WangD, IvanisenkoY, et al.. Nanoscale morphology of Ni50Ti45Cu5 nanoglass. Mater. Charact., 2016, 11326

[44]

MohriM, WangD, IvanisenkoJ, GleiterH, HahnH. Investigation of the deposition conditions on the microstructure of TiZrCuPd nano-glass thin films. Mater. Charact., 2017, 131140

[45]

S.V. Ketov, X. Shi, G. Xie, et al., Nanostructured Zr–Pd metallic glass thin film for biochemical applications, Sci. Rep., 5(2015), art. No. 7799.

[46]

J.Y. Cheng, T. Li, S. Ullah, et al., Giant magnetocaloric effect in nanostructured Fe–Co–P amorphous alloys enabled through pulse electrodeposition, Nanotechnology, 31(2020), No. 38, art. No. 385704.

[47]

GuoCY, FangYN, WuB, et al.. Ni–P nanoglass prepared by multi-phase pulsed electrodeposition. Mater. Res. Lett., 2017, 55293

[48]

LiT, MaK, ZhengGP. The effects of glass–glass interfaces on thermodynamic and mechanical properties of Co–Fe–P metallic nano-glasses. J. Mater. Res., 2021, 36244951

[49]

WangXD, CaoQP, JiangJZ, et al.. Atomic-level structural modifications induced by severe plastic shear deformation in bulk metallic glasses. Scripta Mater., 2011, 64181

[50]

ShaoH, XuYL, ShiB, et al.. High density of shear bands and enhanced free volume induced in Zr70Cu20Ni10 metallic glass by high-energy ball milling. J. Alloy. Compd., 2013, 54877

[51]

WuKY, ChuF, MengYY, et al.. Cathodic corrosion activated Fe-based nanoglass as a highly active and stable oxygen evolution catalyst for water splitting. J. Mater. Chem. A, 2021, 92012152

[52]

WangXL, JiangF, HahnH, et al.. Plasticity of a scandium-based nanoglass. Scripta Mater., 2015, 9840

[53]

WangXL, JiangF, HahnH, et al.. Sample size effects on strength and deformation mechanism of Sc75Fe25 nanoglass and metallic glass. Scripta Mater., 2016, 11695

[54]

YangQ, PeiCQ, YuHB, FengT. Metallic nanoglasses with promoted β-relaxation and tensile plasticity. Nano Lett., 2021, 21146051

[55]

S. Adibi, P.S. Branicio, and S.P. Joshi, Suppression of shear banding and transition to necking and homogeneous flow in nanoglass nanopillars, Sci. Rep., 5(2015), art. No. 15611.

[56]

Y.B. Zhao, X.H. Peng, C. Huang, B. Yang, N. Hu, and M.C. Wang, Super ductility of nanoglass aluminium nitride, Nanomaterials, 9(2019), No. 11, art. No. 1535.

[57]

AdjaoudO, AlbeK. Influence of microstructural features on the plastic deformation behavior of metallic nanoglasses. Acta Mater., 2019, 168393

[58]

LiFC, WangTY, HeQF, et al.. Micromechanical mechanism of yielding in dual nano-phase metallic glass. Scripta Mater., 2018, 154186

[59]

D. Şopu, Y. Ritter, H. Gleiter, and K. Albe, Deformation behavior of bulk and nanostructured metallic glasses studied via molecular dynamics simulations, Phys. Rev. B, 83(2011), No. 10, art. No. 100202.

[60]

S. Adibi, P.S. Branicio, Y.W. Zhang, and S.P. Joshi, Composition and grain size effects on the structural and mechanical properties of CuZr nanoglasses, J. Appl. Phys., 116(2014), No. 4, art. No. 043522.

[61]

ŞopuD, AlbeK. Influence of grain size and composition, topology and excess free volume on the deformation behavior of Cu–Zr nanoglasses. Beilstein J. Nanotechnol., 2015, 6537

[62]

RitterY, ŞopuD, GleiterH, AlbeK. Structure, stability and mechanical properties of internal interfaces in Cu64Zr36 nanoglasses studied by MD simulations. Acta Mater., 2011, 59176588

[63]

ShaZD, BranicioPS, PeiQX, et al.. Strong and superplastic nanoglass. Nanoscale, 2015, 74117404

[64]

W.R. Jian, L. Wang, X.H. Yao, and S.N. Luo, Balancing strength, hardness and ductility of Cu64Zr36 nanoglasses via embedded nanocrystals, Nanotechnology, 29(2018), No. 2, art. No. 025701.

[65]

B. Cai, D. Wang, N. Gao, et al., Balancing strength and ductility of cylindrical-shaped Cu64Zr36 nanoglass via embedded Cu nanocrystals, J. Non Cryst. Solids, 544(2020), art. No. 120211.

[66]

S.Y. Yuan and P.S. Branicio, Gradient microstructure induced shear band constraint, delocalization, and delayed failure in CuZr nanoglasses, Int. J. Plast., 134(2020), art. No. 102845.

[67]

LiT, ZhengGP. Atomistic simulation on the mechanical properties of diffusion bonded Zr–Cu metallic glasses with oxidized interfaces. Metall. Mater. Trans. A, 2021, 5251939

[68]

ShaZD, HeLC, PeiQX, LiuZS, ZhangYW, WangTJ. The mechanical properties of a nanoglass/metallic glass/nanoglass sandwich structure. Scripta Mater., 2014, 8337

[69]

AdibiS, BranicioPS, BallariniR. Compromising high strength and ductility in nanoglass–metallic glass nanolaminates. RSC Adv., 2016, 61613548

[70]

ShaZD, BranicioPS, LeeHP, TayTE. Strong and ductile nanolaminate composites combining metallic glasses and nanoglasses. Int. J. Plast., 2017, 90231

[71]

S.Y. Yuan and P.S. Branicio, Tuning the mechanical properties of nanoglass-metallic glass composites with brick and mortar designs, Scripta Mater., 194(2021), art. No. 113639.

[72]

YaoL, JinZH. Stagnation accommodated global plasticity in nanoglass composites. Scripta Mater., 2015, 10646

[73]

AlbeK, RitterY, ŞopuD. Enhancing the plasticity of metallic glasses: Shear band formation, nanocomposites and nanoglasses investigated by molecular dynamics simulations. Mech. Mater., 2013, 6794

[74]

K.F. Zheng, S.Y. Yuan, H. Hahn, and P.S. Branicio, Excess free volume and structural properties of inert gas condensation synthesized nanoparticles based CuZr nanoglasses, Sci. Rep., 11(2021), No. 1, art. No. 19246.

[75]

ChengB, TrelewiczJR. Interfacial plasticity governs strain delocalization in metallic nanoglasses. J. Mater. Res., 2019, 34132325

[76]

S.D. Feng, L. Li, Y.D. Liu, L.M. Wang, and R.P. Liu, Heterogeneous microstructure of Zr46Cu46Al8 nanoglasses studied by quantifying glass-glass interfaces, J. Non Cryst. Solids, 546(2020), art. No. 120265.

[77]

B. Cheng and J.R. Trelewicz, Controlling interface structure in nanoglasses produced through hydrostatic compression of amorphous nanoparticles, Phys. Rev. Mater., 3(2019), No. 3, art. No. 035602.

[78]

YehJW, ChenSK, LinSJ, et al.. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater., 2004, 65299

[79]

CantorB, ChangITH, KnightP, VincentAJB. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A, 2004, 375–377213

[80]

YehJW. Alloy design strategies and future trends in high-entropy alloys. JOM, 2013, 65121759

[81]

MiracleDB, SenkovON. A critical review of high entropy alloys and related concepts. Acta Mater., 2017, 122448

[82]

MiracleDB, MillerJD, SenkovON, WoodwardC, UchicMD, TileyJ. Exploration and development of high entropy alloys for structural applications. Entropy, 2014, 161494

[83]

W.D. Li, D. Xie, D.Y. Li, Y. Zhang, Y.F. Gao, and P.K. Liaw, Mechanical behavior of high-entropy alloys, Prog. Mater. Sci., 118(2021), art. No. 100777.

[84]

T. Li, N.N. Li, T.L. Yu, and G.P. Zheng, The modulation of compositional heterogeneity for controlling shear banding in Co–P metallic nanoglasses, Nanomaterials, 14(2024), No. 12, art. No. 993.

[85]

T. Li, N.N. Li, S.M. Zhang, and G.P. Zheng, Mechanical property dependence on compositional heterogeneity in Co–P metallic nanoglasses, Sci. Rep., 14(2024), art. No. 7458.

[86]

LiT, ZhengGP. The anelastic behaviors of Co–Fe–Ni–P metallic nano-glasses: Studies on the viscous glass–glass interfaces. Metall. Mater. Trans. A, 2022, 53103736

[87]

T. Li and G.P. Zheng, The influences of glass–glass interfaces and Ni additions on magnetic properties of transition-metal phosphide nano-glasses, AIP Advances, 12(2022), No. 8, art. No. 085229.

[88]

W.F. Marashdeh, J. Longun, and J.O. Iroh, Relaxation behavior and activation energy of relaxation for polyimide and polyimide–graphene nanocomposite, J. Appl. Polym. Sci., 133(2016), No. 28, art. No. 43684.

[89]

F. Román, P. Colomer, Y. Calventus, and J.M. Hutchinson, Study of the molecular dynamics of multiarm star polymers with a poly(ethyleneimine) core and poly(lactide) multiarms, Materials, 10(2017), No. 2, art. No. 127.

[90]

NowickAS, BerryBS, KatzJL. Anelastic relaxation in crystalline solids. J. Appl. Mech., 1975, 423750

[91]

WangQ, PelletierJM, DongYD, JiYF, XiuH. Correlation between microstructure and internal friction in a Zr41.2–Ti13.8–Cu12.5–Ni8–Be22.5–Fe2 bulk metallic glass. Mater. Sci. Eng. A, 2004, 3791–2197

[92]

R. Witte, T. Feng, J.X. Fang, et al., Evidence for enhanced ferromagnetism in an iron-based nanoglass, Appl. Phys. Lett., 103(2013), No. 7, art. No. 073106.

[93]

J.L. Wu, Z.Y. Zhou, Z.J. Tang, L. Wang, X.F. Liang, and J.H. Pi, Creep behaviors of Ta-alloyed CuZr-based metallic glass composite, J. Non Cryst. Solids, 534(2020), art. No. 119950.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/