Adsorption mechanism of multiple water molecules on tricalcium silicate (001) surface: A DFT study

Xinhang Xu , Zirou Liu , Dino Spagnoli , Danial Jahed Armaghani , Chongchong Qi

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (8) : 2034 -2042.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (8) : 2034 -2042. DOI: 10.1007/s12613-024-3073-7
Research Article
research-article

Adsorption mechanism of multiple water molecules on tricalcium silicate (001) surface: A DFT study

Author information +
History +
PDF

Abstract

An in-depth understanding of the hydration mechanism of tricalcium silicate is an important basis for optimizing cement strength development. In this study, the adsorption of water molecules onto the M3-C3S(001) surface at different water coverage levels (θ = 1/5, 2/5, 3/5, 4/5, and 1) was investigated using first-principles calculations. The results demonstrate that the conclusions obtained for single water molecule adsorption cannot be fully applied to multiple water molecule adsorption. The total adsorption energies become more negative with increasing water coverage, while the average adsorption energy of each water molecule becomes more positive with increasing water coverage. The water–water interactions reduce the water-surface interactions and are responsible for the anticooperative adsorption of multiple water molecules onto M3-C3S(001). The formation of Ca–OH (–Ca) bonds favors the detachment of Ca from covalent oxygen, which reveals the significant role of dissociative adsorption. This work aims to extend the water adsorption study on M3-C3S(001) from single water molecule adsorption to multiple water molecule adsorption, providing more detailed insights into the initial water reaction on the C3S surface.

Keywords

cement hydration / tricalcium silicate / water molecules / first-principles calculations / adsorption

Cite this article

Download citation ▾
Xinhang Xu, Zirou Liu, Dino Spagnoli, Danial Jahed Armaghani, Chongchong Qi. Adsorption mechanism of multiple water molecules on tricalcium silicate (001) surface: A DFT study. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(8): 2034-2042 DOI:10.1007/s12613-024-3073-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T.Y. Wu, S.T. Ng, and J. Chen, Deciphering the CO2 emissions and emission intensity of cement sector in China through decomposition analysis, J. Clean. Prod., 352(2022), art. No. 131627.

[2]

C.C. Qi, X.H. Xu, J. Chen, L. Guo, and Q.S. Chen, Ab initio calculations of CO2 adsorption on β-C2S(100) and M3-C3S(001) surfaces: An exploration of early CO2 sequestration pathways, Environ Res., 215(2022), art. No. 114412.

[3]

AkinyemiBA, DaiCP. Luffa cylindrical fibre as a natural reinforcement for cement composites: A review. J. Sustain. Cem. Based Mater., 2022, 115297

[4]

ZhangQ, LiuB, XiaoK, EkbergC, ZhangSG. Preparation and hydration of industrial solid waste: Cement blends: A review. Int. J. Miner. Metall. Mater., 2022, 29122106

[5]

T. Jiang, K. Cui, and J. Chang, Development of low-carbon cement: Carbonation of compounded C2S by β-C2S and γ-C2S, Cem. Concr. Compos., 139(2023), art. No. 105071.

[6]

L. Wang, L. Chen, J.L. Provis, D.C.W. Tsang, and C.S. Poon, Accelerated carbonation of reactive MgO and Portland cement blends under flowing CO2 gas, Cem. Concr. Compos., 106(2020), art. No. 103489.

[7]

Supriya, R. Chaudhury, U. Sharma, P.C. Thapliyal, and L.P. Singh, Low-CO2 emission strategies to achieve net zero target in cement sector, J. Clean. Prod., 417(2023), art. No. 137466.

[8]

A. Cuesta, A. Ayuela, and M.A.G. Aranda, Belite cements and their activation, Cem. Concr. Res., 140(2021), art. No. 106319.

[9]

SajediF, RazakHA. The effect of chemical activators on early strength of ordinary Portland cement-slag mortars. Constr. Build. Mater., 2010, 24101944

[10]

Phoo-ngernkhamT, ChindaprasirtP, SataV, PangdaengS, SinsiriT. Properties of high calcium fly ash geopolymer pastes with Portland cement as an additive. Int. J. Miner. Metall. Mater., 2013, 202214

[11]

K. Schraut, B. Adamczyk, C. Adam, et al., Synthesis and characterisation of alites from reduced basic oxygen furnace slags, Cem. Concr. Res., 147(2021), art. No. 106518.

[12]

BarbhuiyaS, DasBB, AdakD. Insights into cmentitious materials: Exploring atomic structures and interactions. Discover Concr. Cem., 2025, 111

[13]

LiXR, ShenXD, TangML, LiXD. Stability of tricalcium silicate and other primary phases in Portland cement clinker. Ind. Eng. Chem. Res., 2014, 5351954

[14]

LippmaaE, MägiM, TarmakM, WiekerW, GrimmerAR. A high resolution 29Si NMR study of the hydration of tricalciumsilicate. Cem. Concr. Res., 1982, 125597

[15]

Y.M. Liu, S.J. Chen, K. Sagoe-Crentsil, and W.H. Duan, Evolution of tricalcium silicate (C3S) hydration based on image analysis of microstructural observations obtained via Field’s metal intrusion, Mater. Charact., 181(2021), art. No. 111457.

[16]

Y.J. Li, H.Q. Ai, K.H. Lo, Y.C. Kong, H. Pan, and Z.J. Li, Insight into adsorption mechanism of water on tricalcium silicate from first-principles calculations, Cem. Concr. Res., 152(2022), art. No. 106684.

[17]

NicoleauL, BertolimMA. Analytical model for the alite (C3S) dissolution topography. J. Am. Ceram. Soc., 2016, 993773

[18]

ThissenP, NatzeckC, GiraudoN, WeidlerP, WöllC. Hydration of concrete: The first steps. Chemistry., 2018, 24348603

[19]

DurgunE, ManzanoH, PellenqRJM, GrossmanJC. Understanding and controlling the reactivity of the calcium silicate phases from first principles. Chem. Mater., 2012, 2471262

[20]

QiCC, XuXH, ChenQS. Hydration reactivity difference between dicalcium silicate and tricalcium silicate revealed from structural and Bader charge analysis. Int. J. Miner. Metall. Mater., 2022, 292335

[21]

ZhangY, LuXY, SongDS, LiuSB. The adsorption of a single water molecule on low-index C3S surfaces: A DFT approach. Appl. Surf. Sci., 2019, 471658

[22]

C.C. Qi, D. Spagnoli, and A. Fourie, DFT-D study of single water adsorption on low-index surfaces of calcium silicate phases in cement, Appl. Surf. Sci., 518(2020), art. No. 146255.

[23]

QiCC, XuXH, WuMT, ChenQS. Effect of single water adsorption on the bond order of calcium silicates and its implication for hydration variation. J. Am. Ceram. Soc., 2022, 10553510

[24]

Q.Q. Wang, H. Manzano, I. Löpez-Arbeloa, and X.D. Shen, Water adsorption on the β-dicalcium silicate surface from DFT simulations, Minerals, 8(2018), No. 9, art. No. 386.

[25]

M.H. Wang, K.X. Zhang, X. Ji, et al., Molecular insight into the fluidity of cement pastes: Nano-boundary lubrication of cementitious materials, Constr. Build. Mater., 316(2022), art. No. 125800.

[26]

MutisyaSM, de AlmeidaJM, MirandaCR. Molecular simulations of cement based materials: A comparison between first principles and classical force field calculations. Comput. Mater. Sci., 2017, 138392

[27]

KresseG, HafnerJ. Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 1993, 471558

[28]

KresseG, FurthmüllerJ. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 1996, 6115

[29]

S. Kim, Y. Lee, J. Plank, and J. Moon, Fundamental discrepancy of chemical reactivity of tricalcium oxy silicate (alite), dicalcium silicate (belite), and their polymorphs: A density functional theory study, Int. J. Concr. Struct. Mater., 16(2022), No. 1, art. No. 46.

[30]

DunstetterF, de NoirfontaineMN, CourtialM. Polymorphism of tricalcium silicate, the major compound of Portland cement clinker 1. Structural data: Review and unified analysis. Cem. Concr. Res., 2006, 36139

[31]

de NoirfontaineMN, DunstetterF, CourtialM, GaseckiG, Signes-FrehelM. Polymorphism of tricalcium silicate, the major compound of Portland cement clinker 2. Modelling alite for Rietveld analysis, an industrial challenge. Cem. Concr. Res., 2006, 36154

[32]

SaritasK, AtacaC, GrossmanJC. Predicting electronic structure in tricalcium silicate phases with impurities using first-principles. J. Phys. Chem. C, 2015, 11995074

[33]

NogueraC. Polar oxide surfaces. J. Phys.: Condens. Matter, 2000, 1231R367

[34]

TaskerPW. The stability of ionic crystal surfaces. J. Phys. C: Solid State Phys., 1979, 12224977

[35]

L. Wang, F. Zhou, Y.S. Meng, and G. Ceder, First-principles study of surface properties of LiFePO4: Surface energy, structure, Wulff shape, and surface redox potential, Phys. Rev. B, 76(2007), No. 16, art. No. 165435.

[36]

MakovG, PayneMC. Periodic boundary conditions in ab initio calculations. Phys. Rev. B, 1995, 5174014

[37]

E.D. Farias, M.E. Zoloff Michoff, V. Sueldo Occello, V. Brunetti, M.C.G. Passeggi Jr, and T. Glatzel, KPFM and DFT as tools to correlate the charge distribution and molecular orientation of dendritic adsorbates on different surfaces, Appl. Surf. Sci., 565(2021), art. No. 150552.

[38]

MoellmannJ, GrimmeS. DFT-D3 study of some molecular crystals. J. Phys. Chem. C, 2014, 118147615

[39]

TjungSJ, ZhangQ, RepickyJJ, et al.. STM and DFT studies of CO2 adsorption on O–Cu(100) surface. Surf. Sci., 2019, 67950

[40]

JiangZ, QinP, FangT. Investigation on adsorption and decomposition of H2S on Pd (100) surface: A DFT study. Surf. Sci., 2015, 632195

[41]

HenkelmanG, ArnaldssonA, JönssonH. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci., 2006, 363354

[42]

SchersonYD, AboudSJ, WilcoxJ, CantwellBJ. Surface structure and reactivity of rhodium oxide. J. Phys. Chem. C, 2011, 1152211036

[43]

I.H. Svenum, I.G. Ringdalen, F.L. Bleken, J. Friis, D. Höche, and O. Swang, Structure, hydration, and chloride ingress in C–S–H: Insight from DFT calculations, Cem. Concr. Res., 129(2020), art. No. 105965.

[44]

C.C. Qi, L. Liu, J.Y. He, Q.S. Chen, L.J. Yu, and P.F. Liu, Understanding cement hydration of cemented paste backfill: DFT study of water adsorption on tricalcium silicate (111) surface, Minerals, 9(2019), No. 4, art. No. 202.

[45]

C.C. Qi, X.H. Xu, D.L. Wang, Y. Feng, Q.L. Zhang, and Q.S. Chen, Coverage-dependent adsorption of H2O on dicalcium silicate (100) surface: A DFT study, Constr. Build. Mater., 321(2022), art. No. 126403.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/