Review of recent advances in ferrite-based materials: From synthesis techniques to electromagnetic wave absorption performance

Xingliang Chen , Di Lan , Luoting Zhou , Hailing Liu , Xiyu Song , Shouyu Wang , Zhuanyong Zou , Guanglei Wu

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (3) : 591 -608.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (3) : 591 -608. DOI: 10.1007/s12613-024-3063-9
Review

Review of recent advances in ferrite-based materials: From synthesis techniques to electromagnetic wave absorption performance

Author information +
History +
PDF

Abstract

With the booming development of electronic information science and 5G communication technology, electromagnetic radiation pollution poses a huge threat and damage to humanity. Developing novel and high-performance electromagnetic wave (EMW) absorbers is an effective method to solve the above issue and has attracted the attention of many researchers. As a typical magnetic material, ferrite plays an important role in the design of high-performance EMW absorbers, and related research focuses on diversified synthesis methods, strong absorption performance, and refined microstructure development. Herein, we focus on the synthesis of ferrites and their composites and introduce recent advances in the high-temperature solid-phase method, sol–gel method, chemical coprecipitation method, and solvent thermal method in the preparation of high-performance EMW absorbers. This review aims to help researchers understand the advantages and disadvantages of ferrite-based EMW absorbers fabricated through these methods. It also provides important guidance and reference for researchers to design high-performance EMW absorption materials based on ferrite.

Cite this article

Download citation ▾
Xingliang Chen, Di Lan, Luoting Zhou, Hailing Liu, Xiyu Song, Shouyu Wang, Zhuanyong Zou, Guanglei Wu. Review of recent advances in ferrite-based materials: From synthesis techniques to electromagnetic wave absorption performance. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(3): 591-608 DOI:10.1007/s12613-024-3063-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S.J. Zhang, D. Lan, J.J. Zheng, et al., Perspectives of nitrogen-doped carbons for electromagnetic wave absorption, Carbon, 221(2024), art. No. 118925.

[2]

X.G. Su, J. Wang, T. Liu, et al., Controllable atomic migration in microstructures and defects for electromagnetic wave absorption enhancement, Adv. Funct. Mater., 34(2024), No. 39, art. No. 2403397.

[3]

Z.R. Jia, X.Y. Zhang, Z. Gu, and G.L. Wu, MOF-derived Ni–Co bimetal/porous carbon composites as electromagnetic wave absorber, Adv. Compos. Hybrid Mater., 6(2022), No. 1, art. No. 28.

[4]

Xie XB, Liu RL, Chen C, et al.. Phase changes and electromagnetic wave absorption performance of XZnC (X = Fe/Co/Cu) loaded on melamine sponge hollow carbon composites. Int. J. Miner. Metall. Mater., 2025, 32(3): 566

[5]

J.P. Li, X.P. Liu, H.Y. Zhao, et al., Dual-Phase engineering of Ni3S2/NiCo-MOF nanocomposites for enhanced ion storage and electron migration, Chem. Eng. J., 489(2024), art. No. 151069.

[6]

D.L. Tan, Q. Wang, M.R. Li, et al., Magnetic media synergistic carbon fiber@Ni/NiO composites for high-efficiency electromagnetic wave absorption, Chem. Eng. J., 492(2024), art. No. 152245.

[7]

L.X. Gai, H.H. Zhao, X.A. Li, et al., Shell engineering afforded dielectric polarization prevails and impedance amelioration toward electromagnetic wave absorption enhancement in nested-network carbon architecture, Chem. Eng. J., 501(2024), art. No. 157556.

[8]

L.M. Song, Y.Q. Chen, Q.C. Gao, et al., Low Weight, low thermal Conductivity, and highly efficient electromagnetic wave absorption of three-dimensional graphene/SiC-nanosheets aerogel, Compos. Part A: Appl. Sci. Manuf., 158(2022), art. No. 106980.

[9]

F.Y. Hu, X.H. Wang, S. Bao, et al., Tailoring electromagnetic responses of delaminated Mo2TiC2Tx MXene through the decoration of Ni particles of different morphologies, Chem. Eng. J., 440(2022), art. No. 135855.

[10]

Wang DS, Hu YZ, Cui ZY, et al.. Sulfur vacancy regulation and multipolarization of Ni xCo1S nanowires-decorated bi-otemplated structures to promote microwave absorption. J. Colloid Interface Sci., 2023, 646: 991.

[11]

D.S. Wang, A. Mukhtar, K.M. Wu, L.Y. Gu, and X.M. Cao, Multi-segmented nanowires: A high tech bright future, Materials, 12(2019), No. 23, art. No. 3908.

[12]

Z.H. Zhou, X.F. Zhou, D. Lan, et al., Modulation engineering of electromagnetic wave absorption performance of layered double hydroxides derived hollow metal carbides integrating corrosion protection, Small, 20(2024), No. 8, art. No. 2305849.

[13]

Le Anh Cao K, Rahmatika AM, Kitamoto Y, Nguyen MTT, Ogi T. Controllable synthesis of spherical carbon particles transition from dense to hollow structure derived from Kraft lignin. J. Colloid Interface Sci., 2021, 589: 252.

[14]

Liu Z, Fan XL, Han MY, et al.. Branched fluorine/adam-antane interfacial compatibilizer for PBO fibers/cyanate ester wave-transparent laminated composites. Chin. J. Chem., 2023, 41(8): 939.

[15]

Ren XY, Song YH, Gao ZG, Wu YL, Jia ZR, Wu GL. Rational manipulation of composition and construction toward Zn/Co bimetal hybrids for electromagnetic wave absorption. J. Mater. Sci. Technol., 2023, 134: 254.

[16]

Srinivas C, Naga Praveen K, Ranjith Kumar E, et al.. Microwave absorption properties of rare earth (RE) ions doped Mn–Ni–Zn nanoferrites (RE = Dy, Sm, Ce, Er) to shield electromagnetic interference (EMI) in X-band frequency. Ceram. Int., 2022, 48(22): 33891.

[17]

D.D. Xiang, Q.C. He, D. Lan, Y.Q. Wang, and X.M. Yin, Regulating the phase composition and microstructure of Fe3Si/SiC nanofiber composites to enhance electromagnetic wave absorption, Chem. Eng. J., 498(2024), art. No. 155406.

[18]

Chen XL, Shi T, Wu GL, Lu Y. Design of molybdenum disulfide@polypyrrole compsite decorated with Fe3O4 and superior electromagnetic wave absorption performance. J. Colloid Interface Sci., 2020, 572: 227.

[19]

X.L. Chen, F. Zhang, D. Lan, et al., State-of-the-art synthesis strategy for nitrogen-doped carbon-based electromagnetic wave absorbers: From the perspective of nitrogen source, Adv. Compos. Hybrid Mater., 6(2023), No. 6, art. No. 220.

[20]

S.J. Zhang, Z.G. Gao, Z.B. Sun, et al., Solid solution strategy for bimetallic metal-polyphenolic networks deriving electromagnetic wave absorbers with regulated heterointerfaces, Appl. Surf. Sci., 611(2023), art. No. 155707.

[21]

Zhang M, Zhao LB, Zhao WX, et al.. Boosted electromagnetic wave absorption performance from synergistic induced polarization of SiCNWs@MnO2@PPy heterostructures. Nano Res., 2023, 16(2): 3558

[22]

G.H. Wang, Y. Zhao, F. Yang, Y. Zhang, M. Zhou, and G.B. Ji, Multifunctional integrated transparent film for efficient electromagnetic protection, Nano Micro Lett., 14(2022), No. 1, art. No. 65.

[23]

Y.F. He, Q. Su, D.D. Liu, et al., Surface engineering strategy for MXene to tailor electromagnetic wave absorption performance, Chem. Eng. J., 491(2024), art. No. 152041.

[24]

L. Wang, X. Li, Q.Q. Li, et al., Oriented polarization tuning broadband absorption from flexible hierarchical ZnO arrays vertically supported on carbon cloth, Small, 15(2019), No. 18, art. No. 1900900.

[25]

S.J. Zhang, J.J. Zheng, D. Lan, et al., Hierarchical engineering on built-in electric field of bimetallic zeolitic imidazolate derivatives towards amplified dielectric loss, Adv. Funct. Mater., (2024), art. No. 2413884.

[26]

L.M. Song, F. Zhang, Y.Q. Chen, et al., Multifunctional SiC@SiO2 nanofiber aerogel with ultrabroadband electromagnetic wave absorption, Nano Micro Lett., 14(2022), No. 1, art. No. 152.

[27]

Song LM, Fan BB, Chen YQ, et al.. Ultralight and hypere-lastic SiC nanofiber aerogel spring for personal thermal energy regulation. J. Adv. Ceram., 2022, 11(8): 1235.

[28]

Zhang SJ, Lan D, Zheng JJ, et al.. Rational construction of heterointerfaces in biomass sugarcane-derived carbon for superior electromagnetic wave absorption. Int. J. Miner. Metall. Mater., 2024, 31(12): 2749.

[29]

Golchinvafa S, Masoudpanah SM. Magnetic and microwave absorption properties of FeNi3/NiFe2O4 composites synthesized by solution combustion method. J. Alloy. Compd., 2019, 787: 390.

[30]

L.M. Song, C.W. Wu, Q. Zhi, et al., Multifunctional SiC aerogel reinforced with nanofibers and nanowires for high-efficiency electromagnetic wave absorption, Chem. Eng. J., 467(2023), art. No. 143518.

[31]

M. Yuan, M. Zhou, and H.Q. Fu, Synergistic microstructure of sandwich-like NiFe2O4@SiO2@MXene nanocomposites for enhancement of microwave absorption in the whole Ku-band, Compos. Part B: Eng., 224(2021), art. No. 109178.

[32]

X. Yang, L.X. Xuan, W.W. Men, et al., Carbonyl iron/glass fiber cloth composites: Achieving multi-spectrum stealth in a wide temperature range, Chem. Eng. J., 491(2024), art. No. 151862.

[33]

G.X. Ding, C.X. Chen, H.X. Tai, et al., Structural characterization and microwave absorbing performance of CuFe2O4/RGO composites, J. Solid State Chem., 297(2021), art. No. 122051.

[34]

Ding L, Zhao XX, Huang Y, Yan J, Li TH, Liu PB. Ultra-broadband and covalently linked core–shell CoFe2O4@PPy nanoparticles with reduced graphene oxide for microwave absorption. J. Colloid Interface Sci., 2021, 595: 168.

[35]

J.M. Tang, K.X. Wang, Y.X. Lu, et al., Mesoporous core-shell structure NiFe2O4@polypyrrole micro-rod with efficient electromagnetic wave absorption in C, X, Ku wavebands, J. Magn. Magn. Mater., 514(2020), art. No. 167268.

[36]

Zhang XJ, Wang GS, Cao WQ, et al.. Enhanced microwave absorption property of reduced graphene oxide (RGO)–MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces, 2014, 6(10): 7471.

[37]

Guo ZQ, Lan D, Zhang CH, et al.. “Two birds one stone” strategy to integrate electromagnetic wave absorption and self-anticorrosion in magnetic nanocomposites with double-shell hollow structure. J. Mater. Sci. Technol., 2025, 220: 307.

[38]

Lei YM, Yao ZJ, Lin HY, Ali Haidry A, Zhou JT, Liu PJ. Synthesis and high-performance microwave absorption of reduced graphene oxide/Co-doped ZnNi ferrite/poly-aniline composites. Mater. Lett., 2019, 236: 456.

[39]

Zhang Y, Liu XH, Guo ZQ, et al.. MXene@Co hollow spheres structure boosts interfacial polarization for broadband electromagnetic wave absorption. J. Mater. Sci. Technol., 2024, 176: 167.

[40]

S. Chen, Y.B. Meng, X.L. Wang, et al., Hollow tubular MnO2/MXene (Ti3C2, Nb2C, and V2C) composites as high-efficiency absorbers with synergistic anticorrosion performance, Carbon, 218(2024), art. No. 118698.

[41]

Lian YY, Lan D, Jiang XD, et al.. Multifunctional electromagnetic wave absorbing carbon fiber/Ti3C2Tx MXene fabric with superior near-infrared laser dependent photothermal antibacterial behaviors. J. Colloid Interface Sci., 2024, 676: 217.

[42]

Liu ZX, Wang YQ, Jia ZR, et al.. In situ constructed honeycomb-like NiFe2O4@Ni@C composites as efficient electromagnetic wave absorber. J. Colloid Interface Sci., 2022, 608: 2849.

[43]

Wang YP, Zhang YY, Tao JN, et al.. Co0.2Fe2.8O4/C composite nanofibers with designable 3D hierarchical architecture for high-performance electromagnetic wave absorption. Ceram. Int., 2021, 47(16): 23275.

[44]

X.X. Zhao, Y. Huang, J. Yan, et al., Excellent electromagnetic wave absorption properties of the ternary composite ZnFe2O4@PANI–rGO optimized by introducing covalent bonds, Compos. Sci. Technol., 210(2021), art. No. 108801.

[45]

Kozlenko DP, Belozerova NM, Ata-Allah SS, et al.. Neutron diffraction study of the pressure and temperature dependence of the crystal and magnetic structures of Zn0.3Cu0.7Fe1.5Ga0.5O4 polycrystalline ferrite. J. Magn. Magn. Mater., 2018, 449: 44.

[46]

J.Y. Hu, X.S. Liu, X.C. Kan, et al., Characterization of texture and magnetic properties of Ni0.5Zn0.5TixFe2−xO4 spinel ferrites, J. Magn. Magn. Mater., 489(2019), art. No. 165411.

[47]

Liu Y, Ren XY, Zhou XF, et al.. Defect design and vacancy engineering of NiCo2Se4 spinel composite for excellent electromagnetic wave absorption. Ceram. Int., 2024, 50(22): 46643.

[48]

Feng GL, Zhou WC, Wang CH, et al.. Microwave absorption of M-type hexaferrite Ba1−xCa,Fe12O19 (x≤0.4) ceramics in 2.6-18 GHz. Ceram. Int., 2019, 45(6): 7102.

[49]

Chen JB, Zheng J, Huang QQ, Wang F, Ji GB. Enhanced microwave absorbing ability of carbon fibers with embedded FeCo/CoFe2O4 nanoparticles. ACS Appl. Mater. Interfaces, 2021, 13(30): 36182.

[50]

Kaur P, Bahel S, Narang SB. Broad-band microwave absorption of Sr0.85La0.15(MnZr)xFe12−2xO19 hexagonal ferrite in 18–40 GHz frequency range. J. Magn. Magn. Mater., 2018, 460: 489.

[51]

Wang ZH, Zhao L, Wang PH, Guo L, Yu JH. Low material density and high microwave-absorption performance of hollow strontium ferrite nanofibers prepared via coaxial electrospinning. J. Alloy. Compd., 2016, 687: 541.

[52]

Z.L. Li, H. Zhu, L.J. Rao, et al., Wrinkle structure regulating electromagnetic parameters in constructed core–shell ZnFe2O4@PPy microspheres as absorption materials, Small, 20(2024), No. 16, art. No. 2308581.

[53]

Zhang Y, Wang J, Wu QL, et al.. Enhanced electromagnetic wave absorption of bacterial cellulose/reduced graphene oxide aerogel by eco-friendly in situ construction. J. Colloid Interface Sci., 2025, 678: 648.

[54]

Praveena K, Sadhana K, Liu HL, Maramu N, Hi-manandini G. Improved microwave absorption properties of TiO2 and Ni0.53Cu0.12Zn0.35Fe2O4 nanocomposites potential for microwave devices. J. Alloy. Compd., 2016, 681: 499.

[55]

Su XG, Zhang Y, Wang J, Liu YQ. Enhanced electromagnetic wave absorption and mechanical performances of graphite nanosheet/PVDF foams via ice dissolution and normal pressure drying. J. Mater. Chem. C, 2024, 12(21): 7775.

[56]

Z.Q. Guo, D. Lan, Z.R. Jia, et al., Multiple tin compounds modified carbon fibers to construct heterogeneous interfaces for corrosion prevention and electromagnetic wave absorption, Nano Micro Lett., 17(2024), No. 1, art. No. 23.

[57]

Chen XL, Wang XW, Li LD, Qi SH. Preparation and microwave absorbing properties of nickel-coated carbon fiber with polyaniline via in situ polymerization. J. Mater. Sci. Mater. Electron., 2016, 27(6): 5607.

[58]

Banerjee M, Mukherjee A, Chakrabarty S, Basu S, Pal M. Bismuth-doped nickel ferrite nanoparticles for room temperature memory devices. ACS Appl. Nano Mater., 2019, 2(12): 7795.

[59]

Yang YN, Xia L, Zhang T, et al.. Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance. Chem. Eng. J., 2018, 352: 510.

[60]

Zhang YT, Liu CY, Peng KS, Cao YF, Fang G, Zhang YJ. Synthesis of broad microwave absorption bandwidth Zr4+−Ni2+ ions gradient-substituted barium ferrite. Ceram. Int., 2020, 46(16): 25808.

[61]

S.J. Cheon, J.R. Choi, S.B. Lee, J.I. Lee, and H. Lee, Frequency tunable Ni–Ti-substituted Ba–M hexaferrite for efficient electromagnetic wave absorption in 8.2–75 GHz range, J. Alloy. Compd., 976(2024), art. No. 173019.

[62]

Wang M, Cheng LC, Huang L, et al.. Effect of Sr doped the YFeO3 rare earth ortho-ferrite on structure, magnetic properties, and microwave absorption performance. Ceram. Int., 2021, 47(24): 34159.

[63]

Han QX, Meng XF, Lu CH. Exchange-coupled Ni0.5Zn0.5Fe2O4/SrFe12O19 composites with enhanced microwave absorption performance. J. Alloy. Compd., 2018, 768: 742.

[64]

Chen XL, Qi SH. Preparation and microwave absorbing properties of polyaniline/NiFe2O4/graphite nanosheet composites via sol–gel reaction and in situ polymerization. J. Sol Gel Sci. Technol., 2017, 81(3): 824.

[65]

Zhang SJ, Pei YX, Zhao ZW, Guan CL, Wu GL. Simultaneous manipulation of polarization relaxation and conductivity toward self-repairing reduced graphene oxide based ternary hybrids for efficient electromagnetic wave absorption. J. Colloid Interface Sci., 2023, 630: 453.

[66]

Ben Ali M, El Maalam K, El Moussaoui H, et al.. Effect of zinc concentration on the structural and magnetic properties of mixed Co–Zn ferrites nanoparticles synthesized by sol/gel method. J. Magn. Magn. Mater., 2016, 398: 20.

[67]

Ali NN, Al-Qassar Bani Al-Marjeh R, Atassi Y, Salloum A, Malki A, Jafarian M. Design of lightweight broadband microwave absorbers in the X-band based on (polyaniline/Mn-NiZn ferrite) nanocomposites. J. Magn. Magn. Mater., 2018, 453: 53.

[68]

Li H, Cao ZM, Lin JY, et al.. Synthesis of u-channelled spherical Fex,(CoyNi1−y)100−x Janus colloidal particles with excellent electromagnetic wave absorption performance. Nanoscale, 2018, 10(4): 1930.

[69]

Aoopngan C, Nonkumwong J, Phumying S, et al.. Amine-functionalized and hydroxyl-functionalized magnesium ferrite nanoparticles for Congo red adsorption. ACS Appl. Nano Mater., 2019, 2(8): 5329.

[70]

Iranmanesh P, Yazdi ST, Mehran M, Saeednia S. Superior magnetic properties of Ni ferrite nanoparticles synthesized by capping agent-free one-step coprecipitation route at different pH values. J. Magn. Magn. Mater., 2018, 449: 172.

[71]

Zhao TB, Lan D, Jia ZR, Gao ZG, Wu GL. Hierarchical porous molybdenum carbide synergic morphological engineering towards broad multi-band tunable microwave absorption. Nano Res., 2024, 17(11): 9845.

[72]

F.A. Wahaab, L.L. Adebayo, A.A. Adekoya, I.G. Hakeem, B. Alqasem, and A.M. Obalalu, Physiochemical properties and electromagnetic wave absorption performance of Ni0.5Cu0.5Fe2O4 nanoparticles at X-band frequency, J. Alloy. Compd., 836(2020), art. No. 155272.

[73]

Lei YM, Yao ZJ, Li SZ, Zhou JT, Ali Haidry A, Liu PJ. Broadband high-performance electromagnetic wave absorption of Co-doped NiZn ferrite/polyaniline on MXenes. Ceram. Int., 2020, 46(8): 10006.

[74]

Chen XL, Wang W, Shi T, Wu GL, Lu Y. One pot green synthesis and EM wave absorption performance of MoS2@nitrogen doped carbon hybrid decorated with ultrasmall cobalt ferrite nanoparticles. Carbon, 2020, 163: 202.

[75]

Liu PB, Huang Y, Zhang X. Superparamagnetic NiFe2O4 particles on poly(3,4-ethylenedioxythiophene)–graphene: Synthesis, characterization and their excellent microwave absorption properties. Compos. Sci. Technol., 2014, 95: 107.

[76]

Liu PB, Huang Y, Yan J, Zhao Y. Magnetic graphene@PANI@porous TiO2 ternary composites for highperformance electromagnetic wave absorption. J. Mater. Chem. C, 2016, 4(26): 6362.

[77]

J.T. Zhou, B. Wei, M.Q. Wang, et al., Three dimensional flower like ZnFe2O4 ferrite loaded graphene: Enhancing microwave absorption performance by constructing microcircuits, J. Alloy. Compd., 889(2021), art. No. 161734.

[78]

T.T. Zheng, Y. Zhang, Z.R. Jia, J.H. Zhu, G.L. Wu, and P.F. Yin, Customized dielectric-magnetic balance enhanced electromagnetic wave absorption performance in CuxS/CoFe2O4 composites, Chem. Eng. J., 457(2023), art. No. 140876.

[79]

F. Zhang, W. Cui, B.B. Wang, et al., Morphology-control synthesis of polyaniline decorative porous carbon with remarkable electromagnetic wave absorption capabilities, Compos. Part B: Eng., 204(2021), art. No. 108491.

[80]

Hou TQ, Jia ZR, Feng AL, et al.. Hierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacity. J. Mater. Sci. Technol., 2021, 68: 61.

[81]

Cheng TT, Guo YY, Xie YX, et al.. Customizing the structure and chemical composition of ultralight carbon foams for superior microwave absorption performance. Carbon, 2023, 206: 181.

[82]

Li HQ, Hou YH, Li LC. Tunable design of yolk–shell ZnFe2O4@C composites for enhancing electromagnetic wave absorption. Powder Technol., 2021, 378: 216.

[83]

L.G. Ren, Y.Q. Wang, Z.R. Jia, Q.C. He, and G.L. Wu, Controlling the heterogeneous interfaces of Fe3O4/N-doped porous carbon via facile swelling for enhancing the electromagnetic wave absorption, Compos. Commun., 29(2022), art. No. 101052.

[84]

C.H. Sun, D. Lan, Z.R. Jia, Z.G. Gao, and G.L. Wu, Kirkend-all effect-induced ternary heterointerfaces engineering for high polarization loss MOF–LDH–MXene absorbers, Small, 20(2024), No. 48, art. No. 2405874.

[85]

S. Golchinvafa, S.M. Masoudpanah, and M. Jazirehpour, Magnetic and microwave absorption properties of FeCo/CoFe2O4 composite powders, J. Alloy. Compd., 809(2019), art. No. 151746.

[86]

Matinise N, Fuku XG, Kaviyarasu K, Mayedwa N, Maaza M. ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation. Appl. Surf. Sci., 2017, 406: 339.

[87]

Jia ZR, Sun LF, Gao ZG, Lan D. Modulating magnetic interface layer on porous carbon heterostructures for efficient microwave absorption. Nano Res., 2024, 17(11): 10099.

[88]

Chu DW, Li FB, Song XM, et al.. A novel dual-tasking hollow cube NiFe2O4–NiCo–LDH@rGO hierarchical material for high preformance supercapacitor and glucose sensor. J. Colloid Interface Sci., 2020, 568: 130.

[89]

Y. Yuan, S.C. Wei, Y. Liang, et al., Solvothermal assisted synthesis of CoFe2O4/CNTs nanocomposite and their enhanced microwave absorbing properties, J. Alloy. Compd., 867(2021), art. No. 159040.

[90]

T. Ma, Y. Cui, Y.L. Sha, et al., Facile synthesis of hierarchically porous rGO/MnZn ferrite composites for enhanced microwave absorption performance, Synth. Met., 265(2020), art. No. 116407.

[91]

Lakshmi RV, Bera P, Chakradhar RPS, et al.. Enhanced microwave absorption properties of PMMA modified MnFe2O4–polyaniline nanocomposites. Phys. Chem. Chem. Phys., 2019, 21(9): 5068.

[92]

Zheng TT, Jia ZR, Zhan QQ, et al.. Self-assembled multi-layered hexagonal-like MWCNTs/MnF2/CoO nanocomposite with enhanced electromagnetic wave absorption. Carbon, 2022, 186: 262.

[93]

Chai L, Wang YQ, Zhou NF, et al.. In-situ growth of core-shell ZnFe2O4@ porous hollow carbon microspheres as an efficient microwave absorber. J. Colloid Interface Sci., 2021, 581: 475.

[94]

Chen XL, Wang Y, Liu HL, Jin S, Wu GL. Interconnected magnetic carbon@NixCo1−xFe2O4 nanospheres with core-shell structure: An efficient and thin electromagnetic wave absorber. J. Colloid Interface Sci., 2022, 606: 526.

[95]

S.Y. Guo, H.L. Guan, Y. Li, et al., Dual-loss Ti3C2Tx MXene/Ni0.6Zn0.4Fe2O4 heterogeneous nanocomposites for highly efficient electromagnetic wave absorption, J. Alloy. Compd., 887(2021), art. No. 161298.

[96]

Yin PF, Zhang LM, Sun P, et al.. Apium-derived biochar loaded with MnFe2O4@C for excellent low frequency electromagnetic wave absorption. Ceram. Int., 2020, 46(9): 13641.

[97]

Ge JW, Liu SM, Liu L, et al.. Optimizing the electromagnetic wave absorption performance of designed hollow CoFe2O4/CoFe@C microspheres. J. Mater. Sci. Technol., 2021, 81: 190.

[98]

H.X. Zhang, Z.R. Jia, B.B. Wang, et al., Construction of remarkable electromagnetic wave absorber from heterogeneous structure of Co–CoFe2O4@mesoporous hollow carbon spheres, Chem. Eng. J., 421(2021), art. No. 129960.

[99]

Shu RW, Xu LL, Zhao ZW. Construction of a hollow nickel-magnesium ferrite decorated nitrogen-doped reduced graphene oxide composite aerogel for highly efficient and broadband microwave absorption. J. Mater. Chem. C, 2023, 11(48): 16961.

[100]

Y.Y. Ma, Y.H. Jiang, C.Y. Wang, S.B. Kang, G.Q. Chen, and B. Zhong, Microwave absorption performance enhancement of NiFe2O4/GNs composite with hollow hexagonal-like structure, J. Magn. Magn. Mater., 565(2023), art. No. 170281.

[101]

M. Liu, B. Zhao, K. Pei, et al., An ion-engineering strategy to design hollow FeCo/CoFe2O4 microspheres for high-performance microwave absorption, Small, 19(2023), No. 25, art. No. 2300363.

[102]

M.Q. Huang, L. Wang, K. Pei, et al., Heterogeneous interface engineering of bi-metal MOFs-derived ZnFe2O4–ZnO-Fe@C microspheres via confined growth strategy toward superior electromagnetic wave absorption, Adv. Funct. Mater., 34(2024), No. 3, art. No. 2308898.

[103]

J.K. Liu, Z.R. Jia, W.H. Zhou, et al., Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption, Chem. Eng. J., 429(2022), art. No. 132253.

[104]

Chen XL, Lan D, Zhou LT, et al.. Rational construction of ZnFe2O4 decorated hollow carbon cloth towards effective electromagnetic wave absorption. Ceram. Int., 2024, 50(13): 24549.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

284

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/