Strain-enhanced liquid-metal-coated carbonyl-iron-powder-embedded polydimethylsiloxane composites for effective electromagnetic wave absorption

Haeji Kim , Philippe Tassin , Zungsun Choi , Byungil Hwang

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (7) : 1730 -1738.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (7) : 1730 -1738. DOI: 10.1007/s12613-024-3055-9
Research Article
research-article

Strain-enhanced liquid-metal-coated carbonyl-iron-powder-embedded polydimethylsiloxane composites for effective electromagnetic wave absorption

Author information +
History +
PDF

Abstract

The advancement of wireless technologies has increased the global demand for ubiquitous connectivity. However, this surge has increased electromagnetic pollution. This study introduces a composite comprising a polymer matrix (polydimethylsiloxane, PDMS) and a magnetic filler (carbonyl iron powder, CIP) to effectively absorb electromagnetic waves (EMW) and suppress electromagnetic noise, while exhibiting good mechanical properties. Eutectic gallium–indium (EGaIn) liquid metal (LM) was introduced to improve the insulating properties of magnetic fillers. A core–shell structure was obtained by coating the CIP particles with EGaIn, thereby combining magnetic and dielectric materials to enhance EMW absorption. The fluid characteristics of the LM improved the mechanical properties, whereas its electrical conductivity enhanced interfacial polarization loss, thereby augmenting the dielectric loss value of the composites. Moreover, the application of mechanical strain enhanced the EMW absorption of the LM/CIP/PDMS composites due to the formation of a conductive LM network.

Keywords

electromagnetic wave absorption / strain enhancement / liquid metal / carbonyl iron powder particle / core–shell structure / dielectric loss

Cite this article

Download citation ▾
Haeji Kim, Philippe Tassin, Zungsun Choi, Byungil Hwang. Strain-enhanced liquid-metal-coated carbonyl-iron-powder-embedded polydimethylsiloxane composites for effective electromagnetic wave absorption. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(7): 1730-1738 DOI:10.1007/s12613-024-3055-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WangXY, LiaoSY, WanYJ, et al.. Electromagnetic interference shielding materials: Recent progress, structure design, and future perspective. J. Mater. Chem. C, 2022, 10144.

[2]

HaH, QaiserN, YunTG, CheongJY, LimS, HwangB. Sensing mechanism and application of mechanical strain sensor: A mini-review. Facta Univ. Ser. Mech. Eng., 2023, 214751

[3]

TianK, HuDR, WeiQ, FuQ, DengH. Recent progress on multifunctional electromagnetic interference shielding polymer composites. J. Mater. Sci. Technol., 2023, 134106.

[4]

L. Wang, M.Q. Huang, X. Qian, et al., Confined magnetic–dielectric balance boosted electromagnetic wave absorption, Small, 17(2021), No. 30, art. No. 2100970.

[5]

H. Kim, G. Kim, J.H. Kang, M.J. Oh, N. Qaiser, and B. Hwang, Intrinsically conductive and highly stretchable liquid metal/carbon nanotube/elastomer composites for strain sensing and electromagnetic wave absorption, Adv. Compos. Hybrid Mater., 8(2025), art. No. 14.

[6]

CaoYS, ChengZ, WangRF, et al.. Multifunctional graphene/carbon fiber aerogels toward compatible electromagnetic wave absorption and shielding in gigahertz and terahertz bands with optimized radar cross section. Carbon, 2022, 199333.

[7]

XieXB, LiuRL, ChenC, et al.. Phase changes and electromagnetic wave absorption performance of XZnC (X = Fe/Co/Cu) loaded on melamine sponge hollow carbon composites. Int. J. Miner. Metall. Mater., 2025, 323566.

[8]

WenJH, LanD, WangYQ, et al.. Absorption properties and mechanism of lightweight and broadband electromagnetic wave-absorbing porous carbon by the swelling treatment. Int. J. Miner. Metall. Mater., 2024, 3171701.

[9]

ChoiC, QaiserN, HwangB. Mechanically pressed polymer-matrix composites with 3D structured filler networks for electromagnetic interference shielding application. Facta Univ. Ser. Mech. Eng., 2024, 224601

[10]

Y. Zhao, L.L. Hao, X.D. Zhang, et al., A novel strategy in electromagnetic wave absorbing and shielding materials design: Multi-responsive field effect, Small Sci., 2(2022), No. 2, art. No. 2100077.

[11]

S.H. Ryu, Y.K. Han, S.J. Kwon, et al., Absorption-dominant, low reflection EMI shielding materials with integrated metal mesh/TPU/CIP composite, Chem. Eng. J., 428(2022), art. No. 131167.

[12]

KruželákJ, KvasničákováA, HložekováK, HudecI. Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Adv., 2021, 31123.

[13]

KimH, ParkS, KimS, SeoY. Microwave absorption and shielding property of Fe–Si–Al alloy/MWCNT/polymer nanocomposites. Langmuir, 2019, 35216950.

[14]

H.F. Pang, Y.P. Duan, L.X. Huang, et al., Research advances in composition, structure and mechanisms of microwave absorbing materials, Composite, Part B, 224(2021), art. No. 109173.

[15]

J.Y. Cheng, H.B. Zhang, M.Q. Ning, et al., Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: The search for dielectric and magnetic synergy?, Adv. Funct. Mater., 32(2022), No. 23, art. No. 2200123.

[16]

GuoY, WangDD, TianY, et al.. FeCo alloy nanoparticle decorated cellulose based carbon aerogel as a low-cost and efficient electromagnetic microwave absorber. J. Mater. Chem. C, 2022, 101126.

[17]

WangYC, WangWL, SunJ, SunCG, FengYK, LiZ. Microwave-based preparation and characterization of Fecored carbon nanocapsules with novel stability and super electromagnetic wave absorption performance. Carbon, 2018, 1351.

[18]

YangJP, LiuZH, ZhouHR, JiaL, WuAH, JiangLW. Enhanced electromagnetic-wave absorbing performances and corrosion resistance via tuning Ti contents in FeCoNiCuTix high-entropy alloys. ACS Appl. Mater. Interfaces, 2022, 141012375.

[19]

C. Choi, R. Thompson, and B. Hwang, A review of the fabrication of enhanced-performance magnetorheological fluids using carbonyl iron powder, J. Mol. Liq., 408(2024), art. No. 125308.

[20]

W.Y. Gu, J. Shi, T.W. Pang, et al., Mechanical and electromagnetic wave absorption performance of carbonyl iron powder-modified nonwoven materials, Materials, 16(2023), No. 23, art. No. 7403.

[21]

K.S. Sista, S. Dwarapudi, D. Kumar, G.R. Sinha, and A.P. Moon, Carbonyl iron powders as absorption material for microwave interference shielding: A review, J. Alloy. Compd., 853(2021), art. No. 157251.

[22]

HaH, MuellerS, GuriyanovaS, HwangB. Surface energy characterization of a single microsphere particle using peakforce quantitative nanomechanical mapping mode of atomic force microscope. Facta Univ. Ser. Mech. Eng., 2025, 211171

[23]

AbshinovaMA, KuřitkaI, KazantsevaNE, VilčákováJ, SáhaP. Thermomagnetic stability and heat-resistance properties of carbonyl iron filled siloxanes. Mater. Chem. Phys., 2009, 114178.

[24]

C.Q. Ge, L.Y. Wang, G. Liu, L. Wang, K.J. Xu, and W.C. Wang, MOFs-derived flaky carbonyl iron/Co@C core–shell composites for thin thickness and broadband microwave absorption materials, J. Alloy. Compd., 886(2021), art. No. 161097.

[25]

Y. Seo, S. Ko, H. Ha, et al., Stretchable carbonyl iron powder/polydimethylsiloxane composites for noise suppression in gigahertz bandwidth, Compos. Sci. Technol., 218(2022), art. No. 109150.

[26]

C.J. Li, X. Wang, X.H. Liu, J.Y. Zhang, S. Bi, and Z.L. Hou, Broadband and strong microwave absorption combining excellent EMI shielding of VGCF/carbonyl iron composites derived from synergistic magnetic and dielectric losses, Carbon, 214(2023), art. No. 118383.

[27]

Y.L. Lin, J. Genzer, and M.D. Dickey, Attributes, fabrication, and applications of gallium-based liquid metal particles, Adv. Sci., 7(2020), No. 12, art. No. 2000192.

[28]

X.R. Wu, H. Fang, X. Ma, and S. Yan, Gallium-based liquid metals: Optical properties, applications, and challenges, Adv. Opt. Mater., 11(2023), No. 22, art. No. 2301180.

[29]

TangSY, TaborC, Kalantar-ZadehK, DickeyMD. Gallium liquid metal: The devil’s elixir. Annu. Rev. Mater. Res., 2021, 51381.

[30]

ChoiC, LiuL, HwangB. Liquid metal composites: Recent advances and applications. Int. J. Miner. Metall. Mater., 2025, 3251008.

[31]

HongS, ChoiZ, HwangB, MaticA. Research trends and future perspectives on Zn-ion batteries using Ga-based liquid metal coatings on Zn anodes. ACS Energy Lett., 2024, 9115421.

[32]

J. Ma, F. Krisnadi, M.H. Vong, M. Kong, O.M. Awartani, and M.D. Dickey, Shaping a soft future: Patterning liquid metals, Adv. Mater., 35(2023), No. 19, art. No. 2205196.

[33]

AmbuloCP, FordMJ, SearlesK, MajidiC, WareTH. 4D-printable liquid metal–liquid crystal elastomer composites. ACS Appl. Mater. Interfaces, 2021, 131112805.

[34]

H. Yoon, C. Choi, S. Hong, et al., Acid-treatment-assisted liquid metal-based zinc metal anode for stable aqueous zinc-ion batteries, Int. J. Energy Res., 2025(2025), No. 1, art. No. 1405163.

[35]

JiaLC, JinYF, RenJW, ZhaoLH, YanDX, LiZM. Highly thermally conductive liquid metal-based composites with superior thermostability for thermal management. J. Mater. Chem. C, 2021, 982904.

[36]

ChenS, WangHZ, ZhaoRQ, RaoW, LiuJ. Liquid metal composites. Matter, 2020, 261446.

[37]

D.H. Yu, Y. Liao, Y.C. Song, et al., A super-stretchable liquid metal foamed elastomer for tunable control of electromagnetic waves and thermal transport, Adv. Sci., 7(2020), No. 12, art. No. 2000177.

[38]

F. Pan, L. Cai, Y.Y. Shi, et al., Phase engineering reinforced multiple loss network in apple tree-like liquid metal/Ni–Ni3P/N-doped carbon fiber composites for high-performance microwave absorption, Chem. Eng. J., 435(2022), art. No. 135009.

[39]

R.Q. Zhu, Z.Y. Li, G. Deng, et al., Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding, Nano Energy, 92(2022), art. No. 106700.

[40]

BhattacharjeeY, BoseS. Core–shell nanomaterials for microwave absorption and electromagnetic interference shielding: A review. ACS Appl. Nano Mater., 2021, 42949.

[41]

M. Qin, L.M. Zhang, and H.J. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials, Adv. Sci., 9(2022), No. 10, art. No. 2105553.

[42]

M.D. Dickey, Stretchable and soft electronics using liquid metals, Adv. Mater., 29(2017), No. 27, art. No. 1606425.

[43]

M.L. Ou, H.Q. Liu, X.C. Chen, S. Chu, and G. Chu, Tunable electromagnetic wave-absorbing capability achieved in liquid-metal-based nanocomposite, Appl. Phys. Express, 12(2019), No. 4, art. No. 045005.

[44]

P.S. Banerjee, D.K. Rana, and S.S. Banerjee, Influence of microstructural alterations of liquid metal and its interfacial interactions with rubber on multifunctional properties of soft composite materials, Adv. Colloid Interface Sci., 308(2022), art. No. 102752.

[45]

GuymonGG, MalakootiMH. Multifunctional liquid metal polymer composites. J. Polym. Sci., 2022, 6081300.

[46]

T. Kim, D.M. Kim, B.J. Lee, and J. Lee, Soft and deformable sensors based on liquid metals, Sensors, 19(2019), No. 19, art. No. 4250.

[47]

Y.H. Zhou, X. He, W. Li, et al., Separating paint mist from paint spraying waste gas: Mechanism, model and application, Environ. Eng. Res., 26(2021), No. 5, art. No. 200464.

[48]

TanLM, ZhangJB, ShenJ. Liquid metal/metal porous skeleton with high thermal conductivity and stable thermal reliability. J. Mater. Sci., 2023, 584717829.

[49]

WangF, GuWH, ChenJB, et al.. Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption. J. Mater. Sci. Technol., 2022, 10592.

[50]

KimSW, YoonYW, LeeSJ, et al.. Electromagnetic shielding properties of soft magnetic powder–polymer composite films for the application to suppress noise in the radio frequency range. J. Magn. Magn. Mater., 2007, 3162472.

[51]

WenB, CaoMS, HouZL, et al.. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon, 2013, 65124.

[52]

J.X. Xiao, B.B. Zhan, M.K. He, et al., Interfacial polarization loss improvement induced by the hollow engineering of necklace-like PAN/carbon nanofibers for boosted microwave absorption, Adv. Funct. Mater, 35(2025), No. 18, art. No. 2316722.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

90

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/