Brief review of external physical field-boosted low-temperature electrodeposition for metals and alloys

Junjian Zhou , Zhiyuan Li , Qi Wang , Na Li , Xu Li , Yana Wang , Weili Song

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (5) : 992 -1007.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (5) : 992 -1007. DOI: 10.1007/s12613-024-3035-0
Review

Brief review of external physical field-boosted low-temperature electrodeposition for metals and alloys

Author information +
History +
PDF

Abstract

Electrochemical metallurgy at low temperature (<473 K) shows promise for the extraction and refinement of metals and alloys in a green and sustainable manner. However, the kinetics of the electrodeposition process is generally slow at low temperature, resulting in large overpotential and low current efficiency. Thus, the application of external physical fields has emerged as an effective strategy for improving the mass and charge transfer processes during electrochemical reactions. This review highlights the challenges associated with low-temperature electrochemical processes and briefly discusses recent achievements in optimizing electrodeposition processes through the use of external physical fields. The regulating effects on the optimization of the electrodeposition process and the strategies for selecting various external physical fields, including magnetic, supergravity, and ultrasonic fields are summarized from the perspectives of equipment and mechanisms. Finally, advanced methods for in-situ characterization of external physical field-assisted electrodeposition processes are reviewed to gain a deeper understanding of metallic electrodeposition. An in-depth exploration of the mechanism by which external physical fields affect the electrode process is essential for enhancing the efficiency of metal extraction at low temperatures.

Keywords

low-temperature electrodeposition / external physical field / electrode kinetics / low-temperature electrolyte / in-situ characterization methods

Cite this article

Download citation ▾
Junjian Zhou, Zhiyuan Li, Qi Wang, Na Li, Xu Li, Yana Wang, Weili Song. Brief review of external physical field-boosted low-temperature electrodeposition for metals and alloys. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(5): 992-1007 DOI:10.1007/s12613-024-3035-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. del Carmen Mejia, M. Graske, A. Winter, et al., Electrode-position of reactive aluminum–nickel coatings in an AlCl3:[EMIm]Cl ionic liquid containing nickel nanoparticles, J. Electrochem. Soc., 170(2023), No. 7, art. No. 072504.

[2]

RiVE, YooBU, NersisyanH, LeeJH. Carbon-free recovery route for pure Ti: CuTi-alloy electrorefining in a K-free molten salt. ACS Sustainable Chem. Eng., 2023, 11(4): 1414

[3]

V.S. Cvetković, N.M. Vukićević, D. Feldhaus, et al., Electrodeposition of aluminium–vanadium alloys from chloroaluminate based molten salt containing vanadium ions, Metals, 11(2021), No. 1, art. No. 123.

[4]

YinTQ, XueY, YanYD, et al.. Recovery and separation of rare earth elements by molten salt electrolysis. Int. J. Miner. Metall. Mater., 2021, 28(6): 899

[5]

LiuSS, LiSL, LiuCH, HeJL, SongJX. Effect of fluoride ions on coordination structure of titanium in molten NaCl–KCl. Int. J. Miner. Metall. Mater., 2023, 30(5): 868

[6]

LiX, MaBZ, WangCY, HuD, YW, ChenYQ. Recycling and recovery of spent copper–indium–gallium–diselenide (CIGS) solar cells: A review. Int. J. Miner. Metall. Mater., 2023, 30(6): 989

[7]

M.J. Liu, H.D. Jiao, R. Yuan, et al., Review—Pulse-electrolysis protocols in high temperature molten salt electrochemistry, J. Electrochem. Soc., 170(2023), No. 12, art. No. 123506.

[8]

HayyanM, MjalliFS, HashimMA, AlNashefIM, MeiTX. Investigating the electrochemical windows of ionic liquids. J. Ind. Eng. Chem., 2013, 19(1): 106

[9]

UeM, IdaK, MoriS. Electrochemical properties of organic liquid electrolytes based on quaternary onium salts for electrical double-layer capacitors. J. Electrochem. Soc., 1994, 141(11): 2989

[10]

CaoWX, ShuJC, ChenJM, et al.. Enhanced recovery of high-purity Fe powder from iron-rich electrolytic manganese residue by slurry electrolysis. Int. J. Miner. Metall. Mater., 2024, 31(3): 531

[11]

Y.K. Huang, D.S. Wang, Z. Duan, J. Liu, Y.J. Cao, and W.J. Peng, A novel dissolution and synchronous extraction of rare earth elements from bastnaesite by a functionalized ionic liquid[Hbet][Tf2N], Minerals, 12(2022), No. 12, art. No. 1592.

[12]

FangYX, YoshiiK, JiangXG, et al.. An AlCl3 based ionic liquid with a neutral substituted pyridine ligand for electrochemical deposition of aluminum. Electrochim. Acta, 2015, 160: 82

[13]

H.G. Zhang, N. Zhang, and F.Z. Fang, Investigation of mass transfer inside micro structures and its effect on replication accuracy in precision micro electroforming, Int. J. Mach. Tools Manuf., 165(2021), art. No. 103717.

[14]

LiuL, CaiCC, DongBX. Study on the mechanism of enhanced Ga electrodeposition on three-dimensional porous electrodes. Chin. J. Process Eng., 2023, 23(1): 136

[15]

W.Y. Feng, H.Z. Cao, Y.K. Shen, S.H. Xu, H.B. Zhang, and G.Q. Zheng, A theoretical model for metal cation reduction in the flow field and its application to copper electrorefining, Int. J. Electrochem. Sci., 17(2022), No. 2, art. No. 220236.

[16]

G.F.D. Ferreira, D. Santos, S. Mattedi, L.C.L. Santos, and A.K.C.L. Lobato, Study of the surfactant behaviour and physical properties of ammonium-based ionic liquids, J. Mol. Liq., 390(2023), art. No. 123068.

[17]

Y.Q. Fei, Z.J. Chen, J.L. Zhang, et al., Thiazolium-based ionic liquids: Synthesis, characterization and physicochemical properties, J. Mol. Liq., 342(2021), art. No. 117553.

[18]

GulatiA, LopezCG. Viscosity of polyelectrolytes: Influence of counterion and solvent type. ACS Macro Lett., 2024, 13(8): 1079

[19]

D.D. Mo, J.X. Zhang, G.X. Chen, et al., Stirred-electrodeposition construction of porous Fe-doped NiSe nanoclusters as a bifunctional catalyst for water splitting, J. Alloy. Compd., 1002(2024), art. No. 175090.

[20]

ValverdePE, GreenTA, RoyS. Effect of water on the electrodeposition of copper from a deep eutectic solvent. J. Appl. Electrochem., 2020, 50(6): 699

[21]

Y.Z. Dong, B.Y. Jiang, D. Drummer, and L. Zhang, Mass transfer characteristics at cathode/electrolyte interface during electrodeposition of nickel microcolumns with various aspect ratios, J. Micromech. Microeng., 33(2023), No. 10, art. No. 105007.

[22]

LiCP, LiX, RuanZE. Rheological properties of a multiscale granular system during mixing of cemented paste backfill: A review. Int. J. Miner. Metall. Mater., 2023, 30(8): 1444

[23]

HuangYK, ChenPX, ShuXZ, et al.. Extraction and recycling technologies of cobalt from primary and secondary resources: A comprehensive review. Int. J. Miner. Metall. Mater., 2024, 31(4): 628

[24]

M. Reza Shojaei, G. Reza Khayati, S. Mohammad Javad Korasani, and R. Kafi Harnashki, Investigating the nodulation mechanism of copper cathode based on microscopic approach: As a punch failure factor, Eng. Fail. Anal., 133(2022), art. No. 105970.

[25]

CaoXZ, DreisingerDB, LuJM, BelangerF. Electrorefining of high purity manganese. Hydrometallurgy, 2017, 171: 412

[26]

LuJM, DreisingerD, GlückT. Cobalt electrowinning – A systematic investigation for high quality electrolytic cobalt production. Hydrometallurgy, 2018, 178: 19

[27]

El-JemniMA, Abdel-SamadHS, HassanHH. On the deconvolution of the concurrent cathodic processes with cobalt deposition onto graphite from feebly acidic bath. J. Appl. Electrochem., 2021, 51(12): 1705

[28]

YangY, ZhuRJ, WuG, YangWH, YangHJ, YooE. Universal strike-plating strategy to suppress hydrogen evolution for improving zinc metal reversibility. ACS Nano, 2024, 18(29): 19003

[29]

T.S. Lv and L.M. Suo, Water-in-salt widens the electrochemical stability window: Thermodynamic and kinetic factors, Curr. Opin. Electrochem., 29(2021), art. No. 100818.

[30]

AbbottAP, McKenzieKJ. Application of ionic liquids to the electrodeposition of metals. Phys. Chem. Chem. Phys., 2006, 8(37): 4265

[31]

LuJM, DreisingerDRogersRD, SeddonKR. Electrochemistry: Ionic liquid electroprocessing of reactive metals. Ionic Liquids as Green Solvents, 2003495

[32]

AbbottAP, FrischG, RyderKS. Electroplating using ionic liquids. Annu. Rev. Mater. Res., 2013, 43: 335

[33]

ZhangBG, ShiZN, ShenLL, LiuAM, XuJL, HuXW. Electrodeposition of Al, Al–Li alloy, and Li from an Al-containing solvate ionic liquid under ambient conditions. J. Electrochem. Soc., 2018, 165(9): D321

[34]

GeysensP, RangasamyVS, ThayumanasundaramS, et al.. Solvation structure of sodium bis(fluorosulfonyl)imide-glyme solvate ionic liquids and its influence on cycling of Na-MNC cathodes. J. Phys. Chem. B, 2018, 122(1): 275

[35]

QiCC, HuaYX, XuCY, LiJ, ZhangQB, LiY. Research advances in electrochemical window of ionic liquids. Chin. J. Process Eng., 2014, 14(4): 694

[36]

SchottenC, NichollsTP, BourneRA, KapurN, NguyenBN, WillansCE. Making electrochemistry easily accessible to the synthetic chemist. Green Chem., 2020, 22(11): 3358

[37]

H. Tomiyasu, H. Shikata, K. Takao, N. Asanuma, S. Taruta, and Y.Y. Park, An aqueous electrolyte of the widest potential window and its superior capability for capacitors, Sci. Rep., 7(2017), art. No. 45048.

[38]

OngSP, AndreussiO, WuYB, MarzariN, CederG. Electrochemical windows of room-temperature ionic liquids from molecular dynamics and density functional theory calculations. Chem. Mater., 2011, 23(11): 2979

[39]

FanCL, PironDL, ParadisP. Hydrogen evolution on electrodeposited nickel–cobalt–molybdenum in alkaline water electrolysis. Electrochim. Acta, 1994, 39(18): 2715

[40]

QiaoXP, LiHL, ZhaoWZ, LiDJ. Effects of deposition temperature on electrodeposition of zinc–nickel alloy coatings. Electrochim. Acta, 2013, 89: 771

[41]

DongBX, IchikawaT, HanadaN, HinoS, KojimaY. Liquid ammonia electrolysis by platinum electrodes. J. Alloy. Compd., 2011, 509: S891

[42]

FuchigamiT, InagiS, AtobeMFundamentals and Applications of Organic Electrochemistry, 2014, Chichester, John Wiley & Sons Inc: 217

[43]

PradhanD, ManthaD, ReddyRG. The effect of electrode surface modification and cathode overpotential on deposit characteristics in aluminum electrorefining using EMIC–AlCl3 ionic liquid electrolyte. Electrochim. Acta, 2009, 54(26): 6661

[44]

ZhangZL, KitadaA, GaoS, et al.. A concentrated AlCl3–diglyme electrolyte for hard and corrosion-resistant aluminum electrodeposits. ACS Appl. Mater. Interfaces, 2020, 12(38): 43289

[45]

A. Acharjee and B. Saha, Organic electrolytes in electrochemical supercapacitors: Applications and developments, J. Mol. Liq., 400(2024), art. No. 124487.

[46]

WangXJ, ChiYL, MuTC. A review on the transport properties of ionic liquids. J. Mol. Liq., 2014, 193: 262

[47]

I. López and N. Le Poul, Theoretical aspects of electrochemistry at low temperature, J. Electroanal. Chem., 887(2021), art. No. 115160.

[48]

Van DuyneRP, ReilleyCN. Low-temperature electrochemistry. I. Characteristics of electrode reactions in the absence of coupled chemical kinetics. Anal. Chem., 1972, 44(1): 142

[49]

GilliamRJ, GraydonJW, KirkDW, ThorpeSJ. A review of specific conductivities of potassium hydroxide solutions for various concentrations and temperatures. Int. J. Hydrogen Energy, 2007, 32(3): 359

[50]

IsonoT. Density, viscosity, and electrolytic conductivity of concentrated aqueous electrolyte solutions at several temperatures. Alkaline-earth chlorides, lanthanum chloride, sodium chloride, sodium nitrate, sodium bromide, potassium nitrate, potassium bromide, and cadmium nitrate. J. Chem. Eng. Data, 1984, 29(1): 45

[51]

A. Pinkert, K.L. Ang, K.N. Marsh, and S.S. Pang, Density, viscosity and electrical conductivity of protic alkanolammonium ionic liquids, Phys. Chem. Chem. Phys., 13(2011), No. 11, art. No. 5136.

[52]

De LorenziL, FermegliaM, TorrianoG. Density, refractive index, and kinematic viscosity of diesters and triesters. J. Chem. Eng. Data, 1997, 42(5): 919

[53]

G.Y. Gu, Conductivity–temperature behavior of organic electrolytes, Electrochem. Solid-State Lett., 2(1999), No. 10, art. No. 486.

[54]

MotoyamaM, FukunakaY, KikuchiS. Bi electrodeposition under magnetic field. Electrochim. Acta, 2005, 51(5): 897

[55]

MohantaS, FahidyTZ. The effect of a uniform magnetic field on mass transfer in electrolysis. Can. J. Chem. Eng., 1972, 50(2): 248

[56]

H. Cai, W.H. Lin, M.L. Feng, T.X. Zheng, B.F. Zhou, and Y.B. Zhong, Review on eutectic-type alloys solidified under static magnetic field, Crystals, 13(2023), No. 6, art. No. 891.

[57]

LongL, BaojiMA. Effect of magnetic field on anodic dissolution in electrochemical machining. Int. J. Adv. Manuf. Technol., 2018, 94(1): 1177

[58]

ZhongYB, ZhouPW, ZhouJF, et al.. Study on the pulse reverse electrodeposition of Fe-nano–Si composite coatings in magnetic field. Appl. Surf. Sci., 2014, 309: 278

[59]

LongQ, ZhongYB, WangH, ZhengTX, ZhouJF, RenZM. Effects of magnetic fields on Fe–Si composite electrodeposition. Int. J. Miner. Metall. Mater., 2014, 21(12): 1175

[60]

D.H. Wang, J.G. Qin, Z. Zhang, et al., Design and simulation of 1.5 T conduction-cooled superconducting magnet with flipover capability, Fusion Eng. Des., 193(2023), art. No. 113845.

[61]

YuYD, SongZL, GeHL, WeiGY. Influence of magnetic fields on cobalt electrodeposition. Surf. Eng., 2014, 30(2): 83

[62]

BundA, KoehlerS, KuehnleinHH, PliethW. Magnetic field effects in electrochemical reactions. Electrochim. Acta, 2003, 49(1): 147

[63]

A. Bund, A. Ispas, and G. Mutschke, Magnetic field effects on electrochemical metal depositions, Sci. Technol. Adv. Mater., 9(2008), No. 2, art. No. 024208.

[64]

L.L. Li, B.J. Ma, J.K. Cao, X.Y. Li, and C.P. Xu, Magnetic field-assisted electrochemical additive manufacturing of nickel structure: Growth mechanism and microstructural evolution, Mater. Today Commun., 40(2024), art. No. 110030.

[65]

LiDG, ZhaoC, DohertyA, YuanS, GongYL, WangQ. Nucleation and growth mechanism of dendrite-free Ni–Cu catalysts by magneto-electrodeposition for the hydrogen evolution reaction. New J. Chem., 2022, 46(11): 5246

[66]

MonzonLMA, CoeyJMD. Magnetic fields in electrochemistry: The Lorentz force. A mini-review. Electrochem. Commun., 2014, 42: 38

[67]

M.Y. Huang, K. Skibinska, P. Zabinski, et al., On the prospects of magnetic-field-assisted electrodeposition of nanostructured ferromagnetic layers, Electrochim. Acta, 420(2022), art. No. 140422.

[68]

KrauseA, KozaJ, IspasA, UhlemannM, GebertA, BundA. Magnetic field induced micro-convective phenomena inside the diffusion layer during the electrodeposition of Co, Ni and Cu. Electrochim. Acta, 2007, 52(22): 6338

[69]

A.R. Shetty and A.C. Hegde, Magnetoelectrodeposition of Ni–Mo–Cd alloy coating for improved corrosion resistance, Chem. Data Collect., 32(2021), art. No. 100639.

[70]

RabahKL, ChopartJP, SchloerbH, et al.. Analysis of the magnetic force effect on paramagnetic species. J. Electroanal. Chem., 2004, 571(1): 85

[71]

HindsG, CoeyJMD, LyonsMEG. Influence of magnetic forces on electrochemical mass transport. Electrochem. Commun., 2001, 3(5): 215

[72]

H.D. Jiao, J.L. An, Y.Z. Jia, et al., Operando probing and adjusting of the complicated electrode process of multivalent metals at extreme temperature, Proc. Natl. Acad. Sci. U.S.A., 120(2023), No. 28, art. No. e2301780120.

[73]

WangJX, LiuXY, XieHW, YinHY, SongQS, NingZQ. Effect of a magnetic field on the electrode process of Al electrodeposition in a [Emim]Cl–AlCl3 ionic liquid. J. Phys. Chem. B, 2021, 125(50): 13744

[74]

YuYD, SongZL, GeHL, WeiGY, JiangL. Effects of magnetic fields on the electrodeposition process of cobalt. Int. J. Electrochem. Sci., 2015, 10(6): 4812

[75]

LiuY, PanLM, LiuHB. Water electrolysis using plate electrodes in an electrode-paralleled non-uniform magnetic field. Int. J. Hydrogen Energy, 2021, 46(5): 3329

[76]

WeierT, HüllerJ, GerbethG, WeissFP. Lorentz force influence on momentum and mass transfer in natural convection copper electrolysis. Chem. Eng. Sci., 2005, 60(1): 293

[77]

IspasA, MatsushimaH, BundA, BozziniB. Nucleation and growth of thin nickel layers under the influence of a magnetic field. J. Electroanal. Chem., 2009, 626(1–2): 174

[78]

A.L. Daltin, M. Benaissa, and J.P. Chopart, Nucleation and crystal growth in magnetoelectrodeposition, IOP Conf. Ser. Mater. Sci. Eng., 424(2018), art. No. 012022.

[79]

M. del Carmen Aguirre and S.E. Urreta, Effect of an external magnetic field orthogonal to the electrode surface on the electrocrystallization mechanism of Co–Fe films under pulsed applied potential, J. Alloy. Compd., 878(2021), art. No. 160347.

[80]

A.M. Bialostocka, U. Klekotka, and B. Kalska-Szostko, The influence of the substrate and external magnetic field orientation on FeNi film growth, Energies, 15(2022), No. 10, art. No. 3520.

[81]

LiYJ, AnB, WangYG, et al.. Severe corrosion behavior of Fe78Si9B13 glassy alloy under magnetic field. J. Non-Cryst. Solids, 2014, 392: 51

[82]

ShenLD, XuMY, JiangW, et al.. A novel superhydrophobic Ni/Nip coating fabricated by magnetic field induced selective scanning electrodeposition. Appl. Surf. Sci., 2019, 489: 25

[83]

KozaJA, UhlemannM, GebertA, SchultzL. The effect of magnetic fields on the electrodeposition of CoFe alloys. Electrochim. Acta, 2008, 53(16): 5344

[84]

X.F. Meng, M.M. Zhang, H.L. Ge, and G.Y. Wei, Study on the effect of magnetic field on electrodeposition of NiCr alloy coating, Int. J. Electrochem. Sci., 18(2023), No. 12, art. No. 100385.

[85]

R. Li, W.L. Guo, R. Feng, et al., Preparation of Cu nanolayers by magnetic field-assisted electrodeposition and research on the nucleation and growth mechanism, Mater. Today Commun., 41(2024), art. No. 110572.

[86]

M. Miura, Y. Oshikiri, A. Sugiyama, et al., Magneto-dendrite effect: Copper electrodeposition under high magnetic field, Sci. Rep., 7(2017), art. No. 45511.

[87]

CoeyJMD, HindsG, LyonsMEG. Magnetic-field effects on fractal electrodeposits. Europhys. Lett., 1999, 47(2): 267

[88]

Sudibyo, M.B. How, and N. Aziz, Influences of magnetic field on the fractal morphology in copper electrodeposition, IOP Conf. Ser. Mater. Sci. Eng., 285(2018), No. 1, art. No. 012021.

[89]

A. Soba, G. González, L. Calivar, and G. Marshall, Nature of inclined growth in thin-layer electrodeposition under uniform magnetic fields, Phys. Rev. E, 86(2012), No. 5, art. No. 051612.

[90]

WangMY, WangZ, GongXZ, GuoZC. The intensification technologies to water electrolysis for hydrogen production – A review. Renew. Sustainable Energy Rev., 2014, 29: 573

[91]

H. Cheng, K. Scott, and C. Ramshaw, Intensification of water electrolysis in a centrifugal field, J. Electrochem. Soc., 149(2002), No. 11, art. No. D172.

[92]

GriginAP, DavydovAD. Limiting current of electrochemical deposition of copper from copper sulfate and sulfuric acid solution on a vertical electrode under conditions of natural convection. J. Electroanal. Chem., 2000, 493(1–2): 15

[93]

LiuT, GuoZC, WangZ, WangMY. Effects of gravity on the electrodeposition and characterization of nickel foils. Int. J. Miner. Metall. Mater., 2011, 18(1): 59

[94]

WangMY, WangZ, GuoZC. Water electrolysis enhanced by super gravity field for hydrogen production. Int. J. Hydrogen Energy, 2010, 35(8): 3198

[95]

WangMY, WangZ, GuoZC. Deposit structure and kinetic behavior of metal electrodeposition under enhanced gravity-induced convection. J. Electroanal. Chem., 2015, 744: 25

[96]

RamshawC. The opportunities for exploiting centrifugal fields. Heat Recovery Syst. CHP, 1993, 13(6): 493

[97]

NgamchueaK, EloulS, TschulikK, ComptonRG. Advancing from rules of thumb: Quantifying the effects of small density changes in mass transport to electrodes. understanding natural convection. Anal. Chem., 2015, 87(14): 7226

[98]

NovevJK, ComptonRG. Natural convection effects in electrochemical systems. Curr. Opin. Electrochem., 2018, 7: 118

[99]

NajminooriM, MohebbiA, ArabiBG, DaneshpajouhS. CFD simulation of an industrial copper electrowinning cell. Hydrometallurgy, 2015, 153: 88

[100]

WangMY, GongXZ, WangZ. Sustainable electrochemical recovery of high-purity Cu powders from multi-metal acid solution by a centrifuge electrode. J. Cleaner Prod., 2018, 204: 41

[101]

C.C. Wu, J. Gao, Y.Z. Liu, et al., High-gravity intensified electrodeposition for efficient removal of Cd2+ from heavy metal wastewater, Sep. Purif. Technol., 289(2022), art. No. 120809.

[102]

DuanXF, YuanZG, LiuYZ, LiHT, JiaoWZ. Numerical simulation and experimental study of the characteristics of packing feature size on liquid flow in a rotating packed bed. Chin. J. Chem. Eng., 2021, 34: 22

[103]

X.C. Wen, P.Q. Dai, J.L. Wang, L. Guo, and Z.C. Guo, An environmentally-friendly method to recover silver, copper and lead from copper anode slime by carbothermal reduction and super-gravity, Miner. Eng., 180(2022), art. No. 107515.

[104]

WangMY, WangZ, GongXZ, GuoZC. Progress toward electrochemistry intensified by using supergravity fields. ChemElectroChem, 2015, 2(12): 1879

[105]

WangMY, WangZ, GuoZC. Preparation of electrolytic copper powders with high current efficiency enhanced by super gravity field and its mechanism. Trans. Nonferrous Met. Soc. China, 2010, 20(6): 1154

[106]

WangMY, WangZ, GuoZC. Understanding of the intensified effect of super gravity on hydrogen evolution reaction. Int. J. Hydrogen Energy, 2009, 34(13): 5311

[107]

MatsushimaH, NishidaT, KonishiY, FukunakaY, ItoY, KuribayashiK. Water electrolysis under microgravity Part 1. Experimental technique. Electrochim. Acta, 2003, 48(28): 4119

[108]

HuXY, QuNS. Fabrication of nanocrystalline Ni–Co coatings by electrodeposition under supergravity field. Int. J. Electrochem. Sci., 2019, 14(12): 10692

[109]

X.Y. Hu and N.S. Qu, Enhanced corrosion resistance of nickel–cobalt/carborundum coatings formed by supergravity field-assisted electrodeposition, Thin Solid Films, 700(2020), art. No. 137923.

[110]

HuXY, QuNS. Effect of current density and cobalt concentration on the characteristics of NiCo coatings prepared by electrodesposition with a supergravity field. Thin Solid Films, 2019, 679: 110

[111]

WangMY, WangZ, GuoZC. The structure evolution and stability of NiW films electrodeposited under super gravity field. Mater. Lett., 2010, 64(10): 1166

[112]

PetersD. Ultrasound in materials chemistry. J. Mater. Chem., 1996, 6(10): 1605

[113]

T. Nozawa, Considering agitation in ultrasonic electroplating through observation of cavitation, Ultrason. Sonochem., 96(2023), art. No. 106432.

[114]

B. Pollet, The use of power ultrasound for the production of PEMFC and PEMWE catalysts and low-Pt loading and high-performing electrodes, Catalysts, 9(2019), No. 3, art. No. 246.

[115]

M. Murtaza, N. Hussain, H. Ya, and H. Wu, High purity copper nanoparticles via sonoelectrochemical approach, Mater. Res. Express, 6(2019), No. 11, art. No. 115058.

[116]

AkbarpourMR, Gharibi AslF, RashediH. Anti-corrosion and microstructural properties of nanostructured Ni–Co coating prepared by pulse-reverse electrochemical deposition method. J. Mater. Eng. Perform., 2024, 33(1): 94

[117]

CobleyAJ, HalutJ, NégréP. Ultrasonic agitation in barrel electroplating: Field trial results. Trans. IMF, 2015, 93(4): 171

[118]

GuoZC, LiuX, XueJL. Fabrication of Al–Si–Sc alloy bearing AlSi2Sc2 phase using ultrasonically assisted molten salt electrolysis. J. Alloy. Compd., 2019, 797: 883

[119]

ZhangZF, FengR, LiR, et al.. Effect of ultrasonic field on the mechanism of electrodeposited Cu nucleation and growth. J. Mater. Res. Technol., 2023, 26: 32

[120]

SeidlL, AsenL, YesilbasG, FischerP, KühnF, SchneiderO. Ultrasound application and multi-step reactions in electrodeposition of refractory metals. ECS Trans., 2018, 86(14): 3

[121]

C.E. Elgar, S. Ravenhill, P. Hunt, et al., Using ultrasound to increase copper and nickel dissolution and prevent passivation using concentrated ionic fluid, Electrochim. Acta, 476(2024), art. No. 143707.

[122]

H.W. Li, L.L. Xing, Y.S. Niu, S.L. Zhu, and F.H. Wang, Study of microstructure and corrosion behavior of multilayered Ni coatings by ultrasound-assisted electrodeposition, Mater. Res., 23(2020), No. 6, art. No. e20200291.

[123]

ShengMQ, LvCK, HongL, ShaoMW, WanK, LvF. The influence of ultrasonic frequency on the properties of Ni–Co coatings prepared by ultrasound-assisted electrodeposition. Acta Metall. Sin. Engl. Lett., 2013, 26(6): 735

[124]

NanTX, YangJG, ChenB. Electrochemical mechanism of tin membrane electrodeposition under ultrasonic waves. Ultrason. Sonochem., 2018, 42: 731

[125]

H.S. Chen, Y. Han, L. Yang, et al., A method for analyzing two-dimensional lithium ion concentration in the nano silicon films, Appl. Phys. Lett., 115(2019), No. 26, art. No. 264102.

[126]

Z.J. Yu, S.Q. Jiao, S.J. Li, et al., Flexible stable solid-state Al-ion batteries, Adv. Funct. Mater., 29(2019), No. 1, art. No. 1806799.

[127]

Z. Huang, W.L. Song, Y.J. Liu, et al., Stable quasi-solid-state aluminum batteries, Adv. Mater., 34(2022), No. 8, art. No. 2104557.

[128]

D.M. She, W.L. Song, J. He, et al., Surface evolution of aluminum electrodes in non-aqueous aluminum batteries, J. Electrochem. Soc., 167(2020), No. 13, art. No. 130530.

[129]

X. Li, N. Li, L. Yang, H.S. Chen, and W.L. Song, Single-particle measurements: A powerful method for investigating electrochemical reactions, ChemElectroChem, 29(2023), No. 7, art. No. 2203124.

[130]

ZhaoYF, LiZY, LiSJ, SongWL, JiaoSQ. A review of in situ high-temperature characterizations for understanding the processes in metallurgical engineering. Int. J. Miner. Metall. Mater., 2024, 31(11): 2327

[131]

SongX, LiSL, LiuSS, FanY, HeJL, SongJX. Coordination states of metal ions in molten salts and their characterization methods. Int. J. Miner. Metall. Mater., 2023, 30(7): 1261

[132]

T. Tsuda, R. Miyakawa, and S. Kuwabata, Aluminum nanoplatelet electrodeposition in AlCl3–1-ethyl-3-methylimidazolium chloride-urea melts, J. Electrochem. Soc., 169(2022), No. 9, art. No. 092520.

[133]

ChengJH, AssegieAA, HuangCJ, et al.. Visualization of lithium plating and stripping via in operando transmission X-ray microscopy. J. Phys. Chem. C, 2017, 121(14): 7761

[134]

MaXT, MaYF, NolanAM, et al.. Understanding the polymorphism of cobalt nanoparticles formed in electrodeposition–An in situ XRD study. ACS Mater. Lett., 2023, 5(4): 979

[135]

GolksF, GründerY, StettnerJ, KrugK, ZegenhagenJ, MagnussenOM. In situ surface X-ray diffraction studies of homoepitaxial growth on Cu(001) from aqueous acidic electrolyte. Surf. Sci., 2015, 631: 112

[136]

KeistJS, OrmeCA, WrightPK, EvansJW. An in situ AFM study of the evolution of surface roughness for zinc electrodeposition within an imidazolium based ionic liquid electrolyte. Electrochim. Acta, 2015, 152: 161

[137]

GuanPP, LiHB, ZhangX, ShiZN, LiuAM. Electrodeposition of zinc from ethylene carbonate–ZnCl2 electrolyte system. Ionics, 2023, 29(7): 2947

[138]

LiuZ, HöfftO, GöddeAS, EndresF. In situ electrochemical XPS monitoring of the formation of anionic gold species by cathodic corrosion of a gold electrode in an ionic liquid. J. Phys. Chem. C, 2021, 125(48): 26793

[139]

MikiA, NishikawaK, KamesuiG, MatsushimaH, UedaM, RossoM. In situ interferometry study of ionic mass transfer phenomenon during the electrodeposition and dissolution of Li metal in solvate ionic liquids. J. Mater. Chem. A, 2021, 9(26): 14700

[140]

NishikawaK, SaitoT, MatsushimaH, UedaM. Holographic interferometric microscopy for measuring Cu2+ concentration profile during Cu electrodeposition in a magnetic field. Electrochim. Acta, 2019, 297: 1104

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

192

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/