Co0.5Zn0.5Fe2O4 modified residual carbon as an excellent microwave absorber

Yuanchun Zhang , Dacheng Ma , Xingzhao Zhang , Chuanlei Zhu , Shengtao Gao

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (3) : 534 -545.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (3) : 534 -545. DOI: 10.1007/s12613-024-3028-z
Research Article

Co0.5Zn0.5Fe2O4 modified residual carbon as an excellent microwave absorber

Author information +
History +
PDF

Abstract

Microwave absorbers have great potential for military and civil applications. Herein, Co0.5Zn0.5Fe2O4/residual carbon (CZFO/RC) composites have been successfully prepared using a hydrothermal method. RC was derived from coal gasification fine slag (CGFS) via pickling, which removes inorganic compounds. Multiple test means have been used to study the chemical composition, crystal structure, and micromorphology of the CZFO/RC composites, as well as their electromagnetic parameters and microwave absorption (MA) properties. The CZFO/RC composites exhibit excellent MA performance owing to their dielectric and magnetic losses. When the thickness of CZFO/RC-2 (FeCl3·6H2O of 0.007 mol, ZnCl2 of 0.00175 mol, and CoCl2·6H2O of 0.00175 mol) is 1.20 mm, the minimum reflection loss (RLmin) is −56.24 dB, whereas at a thickness of 3.00 mm and 6.34 GHz, RLmin is −45.96 dB and the maximum effective absorption bandwidth is 1.83 GHz (5.53–7.36 GHz). Dielectric loss includes interface and dipole polarizations, while magnetic loss includes current and remnant magnetic loss. CZFO/RC-2 exhibits high impedance matching, allowing microwave to enter the absorber. The computer simulation technology confirms that CZFO/RC-2 considerably decreases the radar cross-section. This study can be used to promote the use of CGFS as electromagnetic wave (EMW)-absorbing materials.

Cite this article

Download citation ▾
Yuanchun Zhang, Dacheng Ma, Xingzhao Zhang, Chuanlei Zhu, Shengtao Gao. Co0.5Zn0.5Fe2O4 modified residual carbon as an excellent microwave absorber. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(3): 534-545 DOI:10.1007/s12613-024-3028-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Raphaeli D, Bilik I. Challenges in automotive MIMO radar calibration in anechoic chamber. IEEE Trans. Aerosp. Electron. Syst., 2023, 59(5): 6205

[2]

K. Cha, S. Oh, H. Hong, H. Park, and S.K. Hong, Detection of electronic devices using FMCW nonlinear radar, Sensors, 22(2022), No. 16, art. No. 6086.

[3]

Y.H. Liu, Y. Shen, L.L. Fan, et al., Parallel radars: From digital twins to digital intelligence for smart radar systems, Sensors, 22(2022), No. 24, art. No. 9930.

[4]

J. Reimann, A.M. Büchner, S. Raab, K. Weidenhaupt, M. Jirousek, and M. Schwerdt, Highly accurate radar cross-section and transfer function measurement of a digital calibration transponder without known reference—Part I: Measurement and results, Remote. Sens., 15(2023), No. 4, art. No. 1153.

[5]

L.Y. Xiao, Y.J. Xie, S.D. Gao, J.B. Li, and P.Y. Wu, Generalized radar range equation applied to the whole field region, Sensors, 22(2022), No. 12, art. No. 4608.

[6]

Bang H, Yan YS, Basit A, Wang WQ, Cheng J. Radar cross section characterization of frequency diverse array radar. IEEE Trans. Aerosp. Electron. Syst., 2023, 59(1): 460.

[7]

Björklund S, Hernnäs H. Statistical analysis of the radar cross section of two small fixed-wing drones using typical flights. IET Radar Sonar Navig., 2024, 18(1): 125.

[8]

D. Bacci and I. Vagias, A trade-off analysis between lateral/directional stability and radar cross section requirements of an air-to-air combat airframe, Aerosp. Sci. Technol., 138(2023), art. No. 108361.

[9]

Y.Y. He, X.W. Wu, G.B. Hu, and W.D. Ke, A new way to achieve infrared stealth by composite phase change microcapsules, J. Energy Storage, 73(2023), art. No. 109217.

[10]

Han M, Zhang D, Shuck CE, et al.. Electrochemically modulated interaction of MXenes with microwaves. Nat. Nanotechnol., 2023, 18(4): 373.

[11]

X. Yang, L.X. Xuan, W.W. Men, et al., Carbonyl iron/glass fiber cloth composites: Achieving multi-spectrum stealth in a wide temperature range, Chem. Eng. J., 491(2024), art. No. 151862.

[12]

Li W, Yu ZJ, Wen QB, et al.. Ceramic-based electromagnetic wave absorbing materials and concepts towards lightweight, flexibility and thermal resistance. Int. Mater. Rev., 2023, 68(5): 487.

[13]

Dai B, Ma Y, Dong F, et al.. Overview of MXene and conducting polymer matrix composites for electromagnetic wave absorption. Adv. Compos. Hybrid Mater., 2022, 5(2): 704.

[14]

G.W. Ma, J.B. Sun, F. Aslani, Y.M. Huang, and F.Y. Jiao, Review on electromagnetic wave absorbing capacity improvement of cementitious material, Constr. Build. Mater., 262(2020), art. No. 120907.

[15]

Li Y, Qing YC, Zhang YR, Xu HL. Simultaneously tuning structural defects and crystal phase in accordion-like TixO2x−1 derived from Ti3C2Tx MXene for enhanced electromagnetic attenuation. J. Adv. Ceram., 2023, 12(10): 1946.

[16]

R.Z. Zhao, T. Gao, Y.X. Li, et al., Highly anisotropic Fe3C microflakes constructed by solid-state phase transformation for efficient microwave absorption, Nat. Commun., 15(2024), No. 1, art. No. 1497.

[17]

Z.M. Tang, L. Xu, C. Xie, et al., Synthesis of CuCo2S4@expanded graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption, Nat. Commun., 14(2023), No. 1, art. No. 5951.

[18]

Shahzad F, Alhabeb M, Hatter CB, et al.. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016, 353(6304): 1137.

[19]

Li JJ, Lan D, Cheng YH, et al.. Constructing mixed-dimensional lightweight magnetic cobalt-based composites heterostructures: An effective strategy to achieve boosted microwave absorption and self-anticorrosion. J. Mater. Sci. Technol., 2024, 196: 60.

[20]

Anand S, Prashalee P. Wide axial ratio bandwidth dual polarized S, C, X, and Ku band antenna using orthogonal SIW. Wirel. Pers. Commun., 2022, 122(3): 2885.

[21]

D. Lan, Y. Hu, M. Wang, Y. Wang, Z.G. Gao, and Z.R. Jia, Perspective of electromagnetic wave absorbing materials with continuously tunable effective absorption frequency bands, Compos. Commun., 50(2024), art. No. 101993.

[22]

Kanellos N, Katsianis D, Varoutas D. Assessing the impact of emerging vertical markets on 5G diffusion forecasting. IEEE Commun. Mag., 2023, 61(2): 38.

[23]

P. Vargas and I. Tien, Methodology to quantitatively assess impacts of 5G telecommunications cybersecurity risk scenarios on dependent connected urban transportation systems, ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A, 8(2022), No. 2, art. No. 04022004.

[24]

Hinrikus H, Koppel T, Lass J, Orru H, Roosipuu P, Bachmann M. Possible health effects on the human brain by various generations of mobile telecommunication: A review based estimation of 5G impact. Int. J. Radiat. Biol., 2022, 98(7): 1210.

[25]

Singh G, Casson R, Chan W. The potential impact of 5G telecommunication technology on ophthalmology. Eye, 2021, 35(7): 1859. 7968572

[26]

C. Jiang and B.Y. Wen, Construction of 1D heterogeneous Co/C@Ag nws with tunable electromagnetic wave absorption and shielding performance, Small, 19(2023), No. 34, art. No. e2301760.

[27]

K. Suslov, A. Kryukov, P. Ilyushin, A. Cherepanov, and A. Kryukov, Modeling the effects of electromagnetic interference from multi-wire traction networks on pipelines, Energies, 16(2023), No. 10, art. No. 4188.

[28]

N.N. Wu, B.B. Zhao, Y.Y. Lian, et al., Metal organic frameworks derived NixSey@NC hollow microspheres with modifiable composition and broadband microwave attenuation, Carbon, 226(2024), art. No. 119215.

[29]

Z.G. Gao, D. Lan, X.Y. Ren, Z.R. Jia, and G.L. Wu, Manipulating cellulose-based dual-network coordination for enhanced electromagnetic wave absorption in magnetic porous carbon nanocomposites, Compos. Commun., 48(2024), art. No. 101922.

[30]

Q.L. Zhang, D. Lan, S.L. Deng, et al., Constructing multiple heterogeneous interfaces in one-dimensional carbon fiber materials for superior electromagnetic wave absorption, Carbon, 226(2024), art. No. 119233.

[31]

Zhou JX, Huang XM, Lan D, et al.. Polymorphic cerium-based Prussian blue derivatives with in situ growing CNT/Co heterojunctions for enhanced microwave absorption via polarization and magnetization. Nano Res., 2024, 17(3): 2050.

[32]

Y. Shen, G.H. Lu, Y.H. Bai, et al., Structural features of residue carbon formed by gasification of different coal macerals, Fuel, 320(2022), art. No. 123918.

[33]

R. Han, A.N. Zhou, N.N. Zhang, et al., Structural properties of residual carbon in coal gasification fine slag and their influence on flotation separation and resource utilization: A review, Int. J. Miner. Metall. Mater., 31(2024), art. No. 2, p. 217.

[34]

X.T. Fan, P.P. Fan, Z.Y. Ren, et al., Separation and physico-chemical properties of residual carbon in gasification slag, Physicochem. Probl. Miner. Process., 58(2022), No. 6, art. No. 154928.

[35]

P. Lv, B. Liu, Y.H. Bai, et al., Residual carbon from coal gasification fine slag for inducing rice straw hydrothermal carbonization to achieve improved reactivity and wastewater decontamination, Fuel, 349(2023), art. No. 128649.

[36]

L.R. Mao, M.D. Zheng, B.L. Xia, et al., Effect of residual carbon on coal ash melting characteristics in reducing atmosphere, Fuel, 346(2023), art. No. 128385.

[37]

G.M. Li, X.J. Xue, L.T. Mao, et al., Recycling and utilization of coal gasification residues for fabricating Fe/C composites as novel microwave absorbents, Int. J. Miner. Metall. Mater., 30(2023), art. No. 3, p. 591.

[38]

F.H. Guo, X. Zhao, Y. Guo, Y.X. Zhang, and J.J. Wu, Fractal analysis and pore structure of gasification fine slag and its flotation residual carbon, Colloids Surf. A, 585(2020), art. No. 124148.

[39]

Y.C. Zhang, S.T. Gao, J. He, H.X. Li, C.L. Wu, and Y.H. Bai, PANI-wrapped high-graphitized residual carbon hybrid with boosted electromagnetic wave absorption performance, Synth. Met., 287(2022), art. No. 117077.

[40]

K. Li, Q.F. Liu, H.F. Cheng, M.S. Hu, and S. Zhang, Classification and carbon structural transformation from anthracite to natural coaly graphite by XRD, Raman spectroscopy, and HRTEM, Spectrochim. Acta Part A, 249(2021), art. No. 119286.

[41]

Lv B, Deng XW, Jiao FS, Dong BB, Fang CJ, Xing BL. Enrichment and utilization of residual carbon from coal gasification slag: A review. Process. Saf. Environ. Prot., 2023, 171: 859.

[42]

Q.Y. Wang, Y.H. Bai, P. Lv, et al., Separation and characterization of different types of residual carbon in fine slag from entrained flow coal gasification, Fuel, 339(2023), art. No. 127437.

[43]

S.T. Gao, Y.C. Zhang, H.X. Li, J. He, H. Xu, and C.L. Wu, The microwave absorption properties of residual carbon from coal gasification fine slag, Fuel, 290(2021), art. No. 120050.

[44]

M. Kaur and S. Bahel, Characterization of sol–gel synthesized Zn0.25Co0.75(NiZr)xFe2−2xO4 (0.05≤x≤0.25) spinel ferrites based microwave absorbers in Ka frequency band, J. Phys. Chem. Solids, 184(2024), art. No. 111671.

[45]

M. Kaur and S. Bahel, Fabrication of Zn0.25Co0.75(MnZr)xFe2−2xO4 spinel ferrites as broadband microwave absorbers in 26.5–40 GHz frequency range, J. Alloys Compd., 954(2023), art. No. 170154.

[46]

F. Hosseini Mohammadabadi, S.M. Masoudpanah, S. Alamol-hoda, and H.R. Koohdar, High-performance microwave absorbers based on (CoNiCuZn)1−x,MnxFe2O4 spinel ferrites, J. Alloys Compd., 909(2022), art. No. 164637.

[47]

Yadav RS, Anju, Kufitka I. Spinel ferrite and MXene-based magnetic novel nanocomposites: An innovative high-performance electromagnetic interference shielding and microwave absorber. Crit. Rev. Solid State Mater. Sci., 2023, 48(4): 441.

[48]

Chen XL, Lan D, Zhou LT, et al.. Rational construction of ZnFe2O4 decorated hollow carbon cloth towards effective electromagnetic wave absorption. Ceram. Int., 2024, 50(13): 24549.

[49]

B. Shi, H.S. Liang, and Z.J. Xie, et al., Dielectric loss enhancement induced by the microstructure of CoFe2O4 foam to realize broadband electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), art. No. 7, p. 1388.

[50]

G.J. Ma, D. Lan, Y. Zhang, et al., Microporous cobalt ferrite with bio-carbon loosely decorated to construct multi-functional composite for dye adsorption, anti-bacteria and electromagnetic protection, Small, 20(2024), No. 45, art. No. e2404449.

[51]

A. Houbi, Z.A. Aldashevich, Y. Atassi, Z. Bagasharova Telmanovna, M. Saule, and K. Kubanych, Microwave absorbing properties of ferrites and their composites: A review, J. Magn. Magn. Mater., 529(2021), art. No. 167839.

[52]

M. Derakhshani, E. Taheri-Nassaj, M. Jazirehpour, and S.M. Masoudpanah, Structural, magnetic, and gigahertz-range electromagnetic wave absorption properties of bulk Ni–Zn ferrite, Sci. Rep., 11(2021), No. 1, art. No. 9468.

[53]

X.B. Xie, B.L. Wang, Y.K. Wang, C. Ni, X.Q. Sun, and W. Du, Spinel structured MFe2O4 (M = Fe, Co, Ni, Mn, Zn) and their composites for microwave absorption: A review, Chem. Eng. J., 428(2022), art. No. 131160.

[54]

Mu Y, Ma ZH, Liang HS, Zhang LM, Wu HJ. Ferrite-based composites and morphology-controlled absorbers. Rare Met., 2022, 41(9): 2943.

[55]

Han Y, Lan D, Han MJ, Xia ZH, Zou JX, Jia ZR. Construction of flower-like MoS2 decorated on Cu doped CoZn-ZIF derived N-doped carbon as superior microwave absorber. Nano Res., 2024, 17(9): 8250.

[56]

J. Yan, Z.D. Ye, D. Lan, W.X. Chen, Z.R. Jia, and G.L. Wu, Transition metal carbides towards electromagnetic wave absorption application: State of the art and perspectives, Compos. Commun., 48(2024), art. No. 101954.

[57]

Liu YW, Zhang J, Gu LS, Wang LX, Zhang QT. Preparation and electromagnetic properties of nanosized Co0.5Zn0.5Fe2O4 ferrite. Rare Met., 2022, 41(9): 3228.

[58]

Zhang JB, Shu RW, Wu Y, Wan ZL, Li XH. Facile synthesis of Co0.5Zn0.5Fe2O4 nanoparticles decorated reduced graphene oxide hybrid nanocomposites with enhanced electromagnetic wave absorption properties. Ceram. Int., 2020, 46(10): 15925.

[59]

Z.J. Ma, C.Y. Mang, H.T. Zhao, Z.H. Guan, and L. Cheng, Comparison of electromagnetism behavior of different content cobalt-zinc ferrite loaded with graphene, J. Inorg. Mater., 34(2019), No. 4, art. No. 407.

[60]

R.W. Shu, Y. Wu, Z.Y. Li, et al., Facile synthesis of cobalt-zinc ferrite microspheres decorated nitrogen-doped multi-walled carbon nanotubes hybrid composites with excellent microwave absorption in the X-band, Compos. Sci. Technol., 184(2019), art. No. 107839.

[61]

Lian YY, Lan D, Jiang XD, et al.. Multifunctional electromagnetic wave absorbing carbon fiber/Ti3C2TX MXene fabric with superior near-infrared laser dependent photothermal antibacterial behaviors. J. Colloid Interface Sci., 2024, 676: 217.

[62]

Su XG, Zhang Y, Wang J, Liu YQ. Enhanced electromagnetic wave absorption and mechanical performances of graphite nanosheet/PVDF foams via ice dissolution and normal pressure drying. J. Mater. Chem. C, 2024, 12(21): 7775.

[63]

D.L. Tan, Q. Wang, M.R. Li, et al., Magnetic media synergistic carbon fiber@Ni/NiO composites for high-efficiency electromagnetic wave absorption, Chem. Eng. J., 492(2024), art. No. 152245.

[64]

Qiao MT, Tian YR, Wang JN, et al.. Magnetic-field-induced vapor-phase polymerization to achieve PEDOT-decorated porous Fe3O4 particles as excellent microwave absorbers. Ind. Eng. Chem. Res., 2022, 61(35): 13072.

[65]

Y.C. Zhang, S.T. Gao, J. He, F. Wei, and X.Z. Zhang, CoFe@C composites decorated with residual carbon as an ultrathin microwave absorber in the X and Ku bands, Diam. Relat. Mater., 141(2024), art. No. 110666.

[66]

Gao ST, Zhang YC, He J, et al.. Coal gasification fine slag residual carbon decorated with hollow-spherical Fe3O4 nanoparticles for microwave absorption. Ceram. Int., 2023, 49(11): 17554.

[67]

Y.C. Zhang, H.X. Li, S.T. Gao, Y. Geng, and C.L. Wu, A study on the chemical state of carbon present in fine ash from gasification, Asia Pac. J. Chem. Eng., 14(2019), No. 4, art. No. e2336.

[68]

Zhang JL, Yang HJ, Shen GX, Cheng P, Zhang JY, Guo SW. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun., 2010, 46(7): 1112.

[69]

Z.R. Jia, J.K. Liu, Z.G. Gao, C.H. Zhang, and G.L. Wu, Molecular intercalation-induced two-phase evolution engineering of 1T and 2H-MS2 (M = Mo, V, W) for interface-polarization-enhanced electromagnetic absorbers, Adv. Funct. Mater., (2024), art. No. 2405523.

[70]

Y.F. He, Q. Su, D.D. Liu, et al., Surface engineering strategy for MXene to tailor electromagnetic wave absorption performance, Chem. Eng. J., 491(2024), art. No. 152041.

[71]

Lv HL, Guo YH, Wu GL, Ji GB, Zhao Y, Xu ZJ. Interface polarization strategy to solve electromagnetic wave interference issue. ACS Appl. Mater. Interfaces, 2017, 9(6): 5660.

[72]

W.Q. Guo, B. Hong, J.C. Xu, et al., CNTs-improved electromagnetic wave absorption performance of Sr-doped Fe3O4/CNTs nanocomposites and physical mechanism, Diam. Relat. Mater., 141(2024), art. No. 110699.

[73]

Bai YH, Zhang DY, Lu Y. Foamed concrete composites: Mn–Zn ferrite/carbon fiber synergy enhances electromagnetic wave absorption performance. Ceram. Int., 2023, 49(21): 33703.

[74]

Zeng SF, Wang MY, Feng WL, et al.. Cobalt nanoparticles encapsulated in a nitrogen and oxygen dual-doped carbon matrix as high-performance microwave absorbers. Inorg. Chem. Front., 2019, 6(9): 2472.

[75]

X.G. Su, J. Wang, T. Liu, et al., Controllable atomic migration in microstructures and defects for electromagnetic wave absorption enhancement, Adv. Funct. Mater., 34(2024), No. 9, art. No. 2403397.

[76]

Meng XF, Han QX, Sun YJ, Liu YF. Synthesis and microwave absorption properties of Ni0.5Zn0.5Fe2O4/BaFe12O19@polyaniline composite. Ceram. Int., 2019, 45(2): 2504.

[77]

Liu Y, Chen Z, Zhang Y, et al.. Broadband and lightweight microwave absorber constructed by in situ growth of hierarchical CoFe2O4/reduced graphene oxide porous nanocomposites. ACS Appl. Mater. Interfaces, 2018, 10(16): 13860.

[78]

Yang ZW, Wan YZ, Xiong GY, et al.. Facile synthesis of ZnFe2O4/reduced graphene oxide nanohybrids for enhanced microwave absorption properties. Mater. Res. Bull., 2015, 61: 292.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

230

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/