Heterogeneous interface enhanced polyurethane/MXene@Fe3O4 composite elastomers for electromagnetic wave absorption and thermal conduction

Xin An , Zhaoxu Sun , Jiahui Shen , Jiajia Zheng , Aixi Sun , Xiping Li , Shaohua Jiang , Yiming Chen

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (3) : 728 -737.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (3) : 728 -737. DOI: 10.1007/s12613-024-3025-2
Research Article

Heterogeneous interface enhanced polyurethane/MXene@Fe3O4 composite elastomers for electromagnetic wave absorption and thermal conduction

Author information +
History +
PDF

Abstract

The development of high-performance functional composites has become a research hotspot in response to the hazards of overheating and electromagnetic radiation in modern electronic devices. Herein, we grew magnetic Fe3O4 particles in situ on the MXene layer to obtain an MXene@Fe3O4 composite with rich heterogeneous interfaces. Owing to the unique heterostructure and the synergistic effects of multiple electromagnetic wave absorption mechanisms, the composite achieved a minimum reflection loss of −27.14 dB and an effective absorption bandwidth of 2.05 GHz at an absorption thickness of 2 mm. Moreover, the MXene@Fe3O4 composite could be encapsulated in thermoplastic polyurethane (TPU) via thermal curing. The obtained composite elastomer exhibited a strong tensile strength, and its thermal diffusivity was 113% higher than that of pure TPU. Such additional mechanical properties and thermal conduction features render this composite elastomer an advanced electromagnetic absorber to adapt to the ever-changing environment for expanding practical applications.

Cite this article

Download citation ▾
Xin An, Zhaoxu Sun, Jiahui Shen, Jiajia Zheng, Aixi Sun, Xiping Li, Shaohua Jiang, Yiming Chen. Heterogeneous interface enhanced polyurethane/MXene@Fe3O4 composite elastomers for electromagnetic wave absorption and thermal conduction. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(3): 728-737 DOI:10.1007/s12613-024-3025-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

H.Y. Wei, Z.P. Zhang, G. Hussain, L.S. Zhou, Q. Li, and K. Ostrikov, Techniques to enhance magnetic permeability in microwave absorbing materials, Appl. Mater. Today, 19(2020), art. No. 100596.

[2]

Mao FZ, Fan XK, Long L, Li Y, Chen H, Zhou W. Constructing 3D hierarchical CNTs/VO2 composite microspheres with superior electromagnetic absorption performance. Ceram. Int., 2023, 49(11): 16924.

[3]

Qiao J, Xu DM, Lv LF, et al.. Self-assembled ZnO/Co hybrid nanotubes prepared by electrospinning for lightweight and high-performance electromagnetic wave absorption. ACS Appl. Nano Mater., 2018, 1(9): 5297.

[4]

Y. Ji, C.P. Mu, B.C. Wang, et al., Facile preparation of CoS2 nanoparticles embedded into polyaniline with tunable electromagnetic wave absorption performance, Mater. Chem. Phys., 246(2020), art. No. 122835.

[5]

He YJ, Lu LN, Sun KK, Wang FZ, Hu SG. Electromagnetic wave absorbing cement-based composite using nano-Fe3O4 magnetic fluid as absorber. Cem. Concr. Compos., 2018, 92: 1.

[6]

Gao S, Zhang GZ, Wang Y, Han XP, Huang Y, Liu PB. MOFs derived magnetic porous carbon microspheres constructed by core–shell Ni@C with high-performance microwave absorption. J. Mater. Sci. Technol., 2021, 88: 56.

[7]

Y.Y. Zeng, L. Long, J.Q. Yu, Y.Q. Li, Y. Li, and W. Zhou, High-efficiency electromagnetic wave absorption of lightweight Nb2O5/CNTs/polyimide with excellent thermal insulation and compression resistance integration, Compos. Sci. Technol., 250(2024), art. No. 110531.

[8]

Y.X. Xia, W.W. Gao, and C. Gao, A review on graphene-based electromagnetic functional materials: Electromagnetic wave shielding and absorption, Adv. Funct. Mater., 32(2022), No. 42, art. No. 2204591.

[9]

F.F. Zhang, J.S. Hu, P. Zhao, et al., Multifunctional electromagnetic interference shielding films comprised of multilayered thermoplastic polyurethane membrane and silver nanowire, Composites Part A, 147(2021), art. No. 106472.

[10]

Cao MS, Cai YZ, He P, Shu JC, Cao WQ, Yuan J. 2D MXenes: Electromagnetic property for microwave absorption and electromagnetic interference shielding. Chem. Eng. J., 2019, 359: 1265.

[11]

X. Li, Z.C. Wu, W.B. You, L.T. Yang, and R.C. Che, Self-assembly MXene–rGO/CoNi film with massive continuous heterointerfaces and enhanced magnetic coupling for superior microwave absorber, Nano Micro Lett., 14(2022), art. No. 73.

[12]

Zou Z, Ning MQ, Lei ZK, et al.. 0D/1D/2D architectural Co@C/MXene composite for boosting microwave attenuation performance in 2–18 GHz. Carbon, 2022, 193: 182.

[13]

J.Q. Wang, L. Liu, S.L. Jiao, K.J. Ma, J. Lv, and J.J. Yang, Hierarchical carbon fiber@MXene@MoS2 core–sheath synergistic microstructure for tunable and efficient microwave absorption, Adv. Funct. Mater., 30(2020), No. 45, art. No. 2002595.

[14]

J.Y. Cheng, Y. Li, H. Raza, et al., Cross-scale synergistic manipulation of dielectric genes in polymetallic sulfides from micropolarization to macroconductance toward wide-band microwave absorption, Adv. Funct. Mater., (2024), art. No. 2405643.

[15]

K.X. Chen, Y.Z. Feng, Y.Q. Shi, et al., Flexible and fire safe sandwich structured composites with superior electromagnetic interference shielding properties, Composites Part A, 160(2022), art. No. 107070.

[16]

Hang TY, Zheng JJ, Zou YJ, et al.. High-performance composite elastomers with abundant heterostructures for enhanced electromagnetic wave absorption with ultrabroad bandwidth. J. Colloid Interface Sci., 2023, 650: 437.

[17]

He XX, Zhou JT, Tao JQ, et al.. Preparation of porous CoNi/N-doped carbon microspheres based on magnetoelectric coupling strategy: A new choice against electromagnetic pollution. J. Colloid Interface Sci., 2022, 626: 123.

[18]

Yang LQ, Wang Y, Lu Z, Cheng RR, Wang N, Li YF. Construction of multi-dimensional NiCo/C/CNT/rGO aerogel by MOF derivative for efficient microwave absorption. Carbon, 2023, 205: 411.

[19]

Wang YL, Yang SH, Wang HY, Wang GS, Sun XB, Yin PG. Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber. Carbon, 2020, 167: 485.

[20]

Q. Chang, H.S. Liang, B. Shi, and H.J. Wu, Microstructure induced dielectric loss in lightweight Fe3O4 foam for electromagnetic wave absorption, iScience, 25(2022), No. 3, art. No. 103925.

[21]

W.J. Ma, P. He, T.Y. Wang, et al., Microwave absorption of carbonization temperature-dependent uniform yolk–shell H-Fe3O4@C microspheres, Chem. Eng. J., 420(2021), art. No. 129875.

[22]

Jiang KD, Liu Y, Pan YF, et al.. Monodisperse NixFe3−xO4 nanospheres: Metal-ion-steered size/composition control mechanism, static magnetic and enhanced microwave absorbing properties. Appl. Surf. Sci., 2017, 404: 40.

[23]

Liang LY, Han GJ, Li Y, et al.. Promising Ti3C2Tx MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces, 2019, 11(28): 25399.

[24]

Lin Y, Dong JJ, Zong HW, Wen B, Yang HB. Synthesis, characterization, and electromagnetic wave absorption properties of composites of reduced graphene oxide with porous LiFe5O8 microspheres. ACS Sustainable Chem. Eng., 2018, 6(8): 10011.

[25]

Zhou MF, Wan GP, Mou PP, Teng SJ, Lin SW, Wang GZ. CNT@NiO/natural rubber with excellent impedance matching and low interfacial thermal resistance toward flexible and heat-conducting microwave absorption applications. J. Mater. Chem. C, 2021, 9(3): 869.

[26]

Zhang X, Wang HH, Hu R, et al.. Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx MXene modified by in situ coated Fe3O4 nanoparticles. Appl. Surf. Sci., 2019, 484: 383.

[27]

Q. Wang, Y.H. Zhou, X. Zhao, et al., Tailoring carbon nanomaterials via a molecular scissor, Nano Today, 36(2021), art. No. 101033.

[28]

Li XL, Yin XW, Han MK, et al.. Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties. J. Mater. Chem. C, 2017, 5(16): 4068.

[29]

Yang JP, Jiang LW, Liu ZH, Tang Z, Wu AH. Multifunctional interstitial-carbon-doped FeCoNiCu high entropy alloys with excellent electromagnetic-wave absorption performance. J. Mater. Sci. Technol., 2022, 113: 61.

[30]

T.R. Cui, Y.C. Qiao, D. Li, et al., Multifunctional, breathable MXene-PU mesh electronic skin for wearable intelligent 12-lead ECG monitoring system, Chem. Eng. J., 455(2023), art. No. 140690.

[31]

Cheng JY, Zhang HB, Xiong YF, et al.. Construction of multiple interfaces and dielectric/magnetic heterostructures in electromagnetic wave absorbers with enhanced absorption performance: A review. J. Materiomics, 2021, 7(6): 1233.

[32]

Liu HG, Wang Z, Wang J, et al.. Structural evolution of MXenes and their composites for electromagnetic interference shielding applications. Nanoscale, 2022, 14(26): 9218.

[33]

Xu K, Gao QQ, Shi SQ, et al.. Construction of attapulgite-based one-dimensional nanonetwork composites with corrosion resistance for high-efficiency microwave absorption. Int. J. Miner. Metall. Mater., 2025, 32(3): 689

[34]

B.W. Deng, Z. Xiang, J. Xiong, Z.C. Liu, L.Z. Yu, and W. Lu, Sandwich-like Fe&TiO2@C nanocomposites derived from MXene/Fe–MOFs hybrids for electromagnetic absorption, Nano-Micro Lett., 12(2020), art. No. 55.

[35]

Liu Y, Zhang S, Su XL, Xu J, Li YY. Enhanced microwave absorption properties of Ti3C2 MXene powders decorated with Ni particles. J. Mater. Sci., 2020, 55(24): 10339.

[36]

W.X. Li, F. Guo, Y.L. Zhao, and Y.Y. Liu, A sustainable and low-cost route to design NiFe2O4 nanoparticles/biomass-based carbon fibers with broadband microwave absorption, Nanomaterials, 12(2022), No. 22, art. No. 4063.

[37]

Zhang YC, Gao ST, Zhang XZ, Ma DC, Zhu CL, He J. Structural and microwave absorption properties of CoFe2O4/residual carbon composites. Int. J. Miner. Metall. Mater., 2025, 32(1): 221.

[38]

Xu XD, Wang YX, Yue Y, Wang CJ, Xu ZH, Liu DM. Core–shell MXene/nitrogen-doped C heterostructure for wide-band electromagnetic wave absorption at thin thickness. Ceram. Int., 2022, 48(20): 30317.

[39]

Xie XB, Wang HS, Kimura H, Ni C, Du W, Wu GL. NiCoZn/C@melamine sponge-derived carbon composites with high-performance electromagnetic wave absorption. Int. J. Miner. Metall. Mater., 2024, 31(10): 2274.

[40]

Y.R. Fu, Y.P. Wang, J.Y. Cheng, et al., Manipulating polarization attenuation in NbS2–NiS2 nanoflowers through homogeneous heterophase interface engineering toward microwave absorption with shifted frequency bands, Nano Mater. Sci., (2024). https://doi.org/10.1016/j.nanoms.2024.05.003

[41]

S. Lee, D. Park, Y. Cho, J. Lee, and J. Kim, Highly thermally conductive and EMI shielding composite reinforced with aligned carbon fibers and MXene, Synth. Met., 291(2022), art. No. 117183.

[42]

Luo Y, Xie YH, Geng W, et al.. Fabrication of thermoplastic polyurethane with functionalized MXene towards high mechanical strength, flame-retardant, and smoke suppression properties. J. Colloid Interface Sci., 2022, 606: 223.

[43]

G.Q. Wu, Z.P. Yang, Z.Y. Zhang, et al., High performance stretchable fibrous supercapacitors and flexible strain sensors based on CNTs/MXene–TPU hybrid fibers, Electrochim. Acta, 395(2021), art. No. 139141.

[44]

X.X. Sheng, Y.F. Zhao, L. Zhang, and X. Lu, Properties of two-dimensional Ti3C2 MXene/thermoplastic polyurethane nanocomposites with effective reinforcement via melt blending, Compos. Sci. Technol., 181(2019), art. No. 107710.

[45]

Dong H, Sun JC, Liu XM, Jiang XD, Lu SW. Highly sensitive and stretchable MXene/CNTs/TPU composite strain sensor with bilayer conductive structure for human motion detection. ACS Appl. Mater. Interfaces, 2022, 14(13): 15504.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

218

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/