Constructing Ti3C2T x–MXene-based gradient woodpile structure by direct ink writing 3D printing for efficient microwave absorption

Changtian Zhu , Pei Liu , Jin Chen , Zixuan Ding , Guohui Tang , Qingqing Gao , Yinxu Ni , Kai Xu , Zhilei Hao , Gaojie Xu , Fenghua Liu

International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (3) : 657 -667.

PDF
International Journal of Minerals, Metallurgy, and Materials ›› 2025, Vol. 32 ›› Issue (3) : 657 -667. DOI: 10.1007/s12613-024-3022-5
Research Article

Constructing Ti3C2T x–MXene-based gradient woodpile structure by direct ink writing 3D printing for efficient microwave absorption

Author information +
History +
PDF

Abstract

As a novel 2D material, Ti3C2T x–MXene has become a major area of interest in the field of microwave absorption (MA). However, the MA effect of common Ti3C2T x–MXene is not prominent and often requires complex processes or combinations of other materials to achieve enhanced performance. In this context, a kind of gradient woodpile structure using common Ti3C2T x–MXene as MA material was designed and manufactured through direct ink writing (DIW) 3D printing. The minimum reflection loss (RLmin) of the Ti3C2T x–MXene-based gradient woodpile structures with a thickness of less than 3 mm can reach −70 dB, showing considerable improvement compared with that of a completely filled structure. In addition, the effective absorption bandwidth (EAB) reaches 7.73 GHz. This study demonstrates that a Ti3C2T x–MXene material with excellent MA performance and tunable frequency band can be successfully fabricated with a macroscopic structural design and through DIW 3D printing without complex material hybridization and modification, offering broad application prospects by reducing electromagnetic wave radiation and interference.

Cite this article

Download citation ▾
Changtian Zhu, Pei Liu, Jin Chen, Zixuan Ding, Guohui Tang, Qingqing Gao, Yinxu Ni, Kai Xu, Zhilei Hao, Gaojie Xu, Fenghua Liu. Constructing Ti3C2T x–MXene-based gradient woodpile structure by direct ink writing 3D printing for efficient microwave absorption. International Journal of Minerals, Metallurgy, and Materials, 2025, 32(3): 657-667 DOI:10.1007/s12613-024-3022-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

B. Anasori, M.R. Lukatskaya, and Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater., 2(2017), No. 2, art. No. 16098.

[2]

Ding HM, Li YB, Li M, et al.. Chemical scissor–mediated structural editing of layered transition metal carbides. Science, 2023, 379(6637): 1130.

[3]

Alhabeb M, Maleski K, Mathis TS, et al.. Selective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene). Angew. Chem. Int. Ed., 2018, 57(19): 5444.

[4]

M. Naguib, M. Kurtoglu, V. Presser, et al., Two-dimensional nanocrystals: Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 23(2011), No. 37, art. No. 4207.

[5]

Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. MXenes: A new family of two-dimensional materials. Adv. Mater., 2014, 26(7): 992.

[6]

L. Li, J. Meng, X.R. Bao, et al., Direct-ink-write 3D printing of programmable micro-supercapacitors from MXene-regulating conducting polymer inks, Adv. Energy Mater., 13(2023), No. 9, art. No. 2203683.

[7]

Z.R. Wang, C.L. Wei, H.Y. Jiang, et al., MXene-based current collectors for advanced rechargeable batteries, Adv. Mater., 36(2024), No. 2, art. No. e2306015.

[8]

Han M, Zhang D, Shuck CE, et al.. Electrochemically modulated interaction of MXenes with microwaves. Nat. Nanotechnol., 2023, 18(4): 373.

[9]

J.L. Hart, K. Hantanasirisakul, A.C. Lang, et al., Control of MXenes’ electronic properties through termination and intercalation, Nat. Commun., 10(2019), No. 1, art. No. 522.

[10]

Zhan XX, Si C, Zhou J, Sun ZM. MXene and MXene-based composites: Synthesis, properties and environment-related applications. Nanoscale Horiz., 2020, 5(2): 235.

[11]

Zhao XF, Vashisth A, Prehn E, et al.. Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter, 2019, 1(2): 513.

[12]

H. Wang, Y. Wu, X. Yuan, et al., Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges, Adv. Mater., 30(2018), No. 12, art. No. e1704561.

[13]

Xu JX, Peng T, Qin X, et al.. Recent advances in 2D MXenes: Preparation, intercalation and applications in flexible devices. J. Mater. Chem. A, 2021, 9(25): 14147.

[14]

Chen W, Liu LX, Zhang HB, Yu ZZ. Kirigami-in-spired highly stretchable, conductive, and hierarchical Ti3C2Tx MXene films for efficient electromagnetic interference shielding and pressure sensing. ACS Nano, 2021, 15(4): 7668.

[15]

Liu ZH, Cui YH, Li Q, Zhang QY, Zhang BL. Fabrication of folded MXene/MoS2 composite microspheres with optimal composition and their microwave absorbing properties. J. Colloid Interface Sci., 2022, 607: 633.

[16]

G.Q. Zhou, M.C. Li, C.Z. Liu, Q.L. Wu, and C.T. Mei, 3D printed Ti3C2Tx MXene/cellulose nanofiber architectures for solid-state supercapacitors: Ink rheology, 3D printability, and electrochemical performance, Adv. Funct. Mater., 32(2022), No. 14, art. No. 2109593.

[17]

R. Zhou, Y.S. Wang, Z.Y. Liu, Y.Q. Pang, J.X. Chen, and J. Kong, Digital light processing 3D-printed ceramic metamaterials for electromagnetic wave absorption, Nano Micro Lett., 14(2022), No. 1, art. No. 122.

[18]

Wang YR, Su RY, Chen JY, et al.. 3D printed bioinspired flexible absorber: Toward high-performance electromagnetic absorption at 75–110 GHz. ACS Appl. Mater. Interfaces, 2023, 15(46): 53996.

[19]

J.H. Peng, J.H. Guo, S.X. Lv, and X.H. Jiang, Novel ZnFe2O4@MnO2@MXene composites with ultrathin thickness and excellent electromagnetic absorption performance, Compos. Commun., 35(2022), art. No. 101316.

[20]

Li JM, Wang H, Xiao X. Intercalation in two-dimensional transition metal carbides and nitrides (MXenes) toward electrochemical capacitor and beyond. Energy Environ. Mater., 2020, 3(3): 306.

[21]

Y.N. Ma, N.S. Liu, L.Y. Li, et al., A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances, Nat. Commun., 8(2017), art. No. 1207.

[22]

Zou Z, Ning MQ, Lei ZK, et al.. 0D/1D/2D architectural Co@C/MXene composite for boosting microwave attenuation performance in 2–18 GHz. Carbon, 2022, 193: 182.

[23]

S. Patra, N.U. Kiran, P. Mane, et al., Hydrophobic MXene with enhanced electrical conductivity, Surf. Interfaces, 39(2023), art. No. 102969.

[24]

Kamysbayev V, Filatov AS, Hu HC, et al.. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science, 2020, 369(6506): 979.

[25]

Bao ZH, Lu CJ, Cao X, et al.. Role of MXene surface terminations in electrochemical energy storage: A review. Chin. Chem. Lett., 2021, 32(9): 2648.

[26]

Alhabeb M, Maleski K, Anasori B, et al.. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater., 2017, 29(18): 7633.

[27]

A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi, and A. Sinitskii, Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes, Adv. Electron. Mater., 2(2016), No. 12, art. No. 1600255.

[28]

Wang XY, Chen WH, Liao YL, et al.. Accordion-like composite of carbon-coated Fe3O4 nanoparticle decorated Ti3C2 MXene with enhanced electrochemical performance. J. Mater. Sci., 2021, 56(3): 2486.

[29]

Chen NJ, Huang HC, Xu Z, et al.. From high-yield Ti3AlCN ceramics to high-quality Ti3CNTx MXenes through eliminating Al segregation. Chin. Chem. Lett., 2020, 31(4): 1044.

[30]

Shin H, Eom W, Lee KH, Jeong W, Kang DJ, Han TH. Highly electroconductive and mechanically strong Ti3C2Tx MXene fibers using a deformable MXene gel. ACS Nano, 2021, 15(2): 3320.

[31]

Ghidiu M, Lukatskaya MR, Zhao MQ, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 2014, 516(7529): 78.

[32]

Lukatskaya MR, Mashtalir O, Ren CE, et al.. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 2013, 341(6153): 1502.

[33]

W. Eom, H. Shin, R.B. Ambade, et al., Large-scale wet-spinning of highly electroconductive MXene fibers, Nat. Commun., 11(2020), No. 1, art. No. 2825.

[34]

N. Bhattacharjee, C. Parra-Cabrera, Y.T. Kim, A.P. Kuo, and A. Folch, Desktop-stereolithography 3D-printing of a poly(dimethylsiloxane)-based material with Sylgard-184 properties, Adv. Mater., 30(2018), No. 22, art. No. 1800001.

[35]

P. Liu, S.Q. Shi, Y.X. Ni, et al., Direct ink writing printed flexible double-layer staggered woodpile structure for multi-band compatible absorption of gigahertz and terahertz waves, Chem. Eng. J., 478(2023), art. No. 147474.

[36]

Y. An, R.Y. Cheng, Q.Y. Du, et al., Designable thermal conductivity and mechanical property of polydimethylsiloxane-based composite prepared by thermoset 3D printing, Compos. Sci. Technol., 241(2023), art. No. 110119.

[37]

P.F. Zhu, W.Y. Yang, R. Wang, S. Gao, B. Li, and Q. Li, Direct writing of flexible Barium titanate/polydimethylsiloxane 3D photonic crystals with mechanically tunable terahertz properties, Adv. Opt. Mater., 5(2017), No. 7, art. No. 1600977.

[38]

Y.C. Shao, F. Long, Z.H. Zhao, et al., 4D printing light-driven soft actuators based on liquid–vapor phase transition composites with inherent sensing capability, Chem. Eng. J., 454(2023), art. No. 140271.

[39]

X. Wu, T. Tu, Y. Dai, et al., Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism, Nano Micro Lett., 13(2021), No. 1, art. No. 148.

[40]

M.A.S.R. Saadi, A. Maguire, N.T. Pottackal, et al., Direct ink writing: A 3D printing technology for diverse materials, Adv. Mater., 34(2022), No. 28, art. No. e2108855.

[41]

A. Shahzad and I. Lazoglu, Direct ink writing (DIW) of structural and functional ceramics: Recent achievements and future challenges, Composites Part B, 225(2021), art. No. 109249.

[42]

Zeng XJ, Cheng XY, Yu RH, Stucky GD. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon, 2020, 168: 606.

[43]

Xia L, Feng YM, Zhao B. Intrinsic mechanism and multiphysics analysis of electromagnetic wave absorbing materials: New horizons and breakthrough. J. Mater. Sci. Technol., 2022, 130: 136.

[44]

H.F. Pang, Y.P. Duan, L.X. Huang, et al., Research advances in composition, structure and mechanisms of microwave absorbing materials, Composites Part B, 224(2021), art. No. 109173.

[45]

Yu LH, Lian GJ, Zhu GZ, et al.. Hollow FeCoNiAl micro-spheres with stabilized magnetic properties for microwave absorption. Nano Res., 2024, 17(3): 2079.

[46]

Zhou XJ, Wen JW, Wang ZN, Ma XH, Wu HJ. Broadband high-performance microwave absorption of the single-layer Ti3C2Tx MXene. J. Mater. Sci. Technol., 2022, 115: 148.

[47]

M. Qin, L. Zhang, and H. Wu, Dielectric loss mechanism in electromagnetic wave absorbing materials, Adv. Sci., 9(2022), No. 10, art. No. e2105553.

[48]

Zhang WD, Zhang X, Wu HJ, Yan HX, Qi SH. Impact of morphology and dielectric property on the microwave absorbing performance of MoS2-based materials. J. Alloys Compd., 2018, 751: 34.

[49]

Wu M, Rao L, Ji ZY, et al.. 3D lightweight interconnected melamine foam modified with hollow CoFe2O4/MXene toward efficient microwave absorption. ACS Appl. Mater. Interfaces, 2024, 16(7): 9169.

[50]

L.H. Cheng, Y. Si, Z.J. Ji, et al., A novel linear gradient carbon fiber array integrated square honeycomb structure with electromagnetic wave absorption and enhanced mechanical performances, Compos. Struct., 305(2023), art. No. 116510.

[51]

W.J. Wang, J.Y. Wen, X.W. Hou, et al., Enhanced microwave absorption of superlattice C–CuS/MXene composites with rich heterogeneous interfaces and conductive network synergies, Mater. Today Phys., 35(2023), art. No. 101108.

[52]

Li QW, Nan K, Wang W, Zheng H, Wang Y. Electrostatic self-assembly sandwich-like 2D/2D NiFe-LDH/MXene heterostructure for strong microwave absorption. J. Colloid Interface Sci., 2023, 648: 983.

[53]

X. Wang, L.Y. Zhang, E.J. Ding, X.H. Cao, C.Y. Luo, and L.Q. Huang, Seed-assisted in situ ZIF-8 growth on carbon nanofibers for enhanced microwave absorption, Carbon, 214(2023), art. No. 118316.

[54]

H.R. Cheng, Y.M. Pan, W. Li, et al., Facile design of multifunctional melamine foam with Ni-anchored reduced graphene oxide/MXene as highly efficient microwave absorber, Nano Today, 52(2023), art. No. 101958.

[55]

M. Chang, Z.R. Jia, S.Q. He, et al., Two-dimensional interface engineering of NiS/MoS2/Ti3C2Tx heterostructures for promoting electromagnetic wave absorption capability, Composites Part B, 225(2021), art. No. 109306.

[56]

T.Q. Hou, Z.R. Jia, B.B. Wang, et al., MXene-based accordion 2D hybrid structure with Co9S8/C/Ti3C2Tx as efficient electromagnetic wave absorber, Chem. Eng. J., 414(2021), art. No. 128875.

[57]

Y. Li, C.L. Dong, S.J. Wang, et al., Insight into lightweight MXene/polyimide aerogel with high-efficient microwave absorption, Mater. Today Phys., 42(2024), art. No. 101373.

RIGHTS & PERMISSIONS

University of Science and Technology Beijing

AI Summary AI Mindmap
PDF

288

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/